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1. Introduction 
"A neglected aspect of statistical testing in a large 
number of geophysical studies has been the 
evaluation of the collective significance of a finite set 
of individual significance tests.  This neglect has 
stemmed . . . from a lack of understanding of the 
combined effects of number and interdependence of 
set numbers."  (Livezey and Chen, 1983) 
 
 More than thirty years have passed since the 
seminal paper by Livezey and Chen (1983) pointed 
out that collections of multiple statistical tests, often in 
the setting of individual tests at many spatial 
gridpoints, are very often interpreted incorrectly and in 
a way that leads to research results being routinely 
overstated.  That paper also proposed an approach to 
dealing with and protecting against that problem, 
which they called assessment of "field significance".  
The idea was to construct a "meta-test" using as input 
the results of the many tests, to address the "global" 
null hypothesis that all individual "local" (e.g., 
gridpoint) null hypotheses are true.  If a global null 
hypothesis cannot be rejected, one cannot conclude 
with adequate confidence that any of the individual 
local tests show meaningful violations of their 
respective null hypotheses.  Thus, failure to achieve 
field significance protects the analyst to a degree from 
being mislead into believing results from the many 
erroneous rejections of true local gridpoint null 
hypotheses that will invariably occur.   
 Unfortunately, very little has changed over 
the intervening decades with respect to the over-
interpretation of multiple hypothesis tests in the 
atmospheric sciences literature.  For example, of the 
281 papers published in the Journal of Climate during 
the first half of 2014, 97 (34.5%) included maps 
described in part by some variant of the quotation in 
the title of this paper.  These papers implicitly but 
wrongly represented that any individual gridpoint test 
exhibiting nominal statistical significance was 
indicative of a physically meaningful result.  By 
contrast, only 3 of the 281 papers (1.1%) considered 
the effects of multiple testing on their scientific 
conclusions.  (The remaining 64.4% of these papers 
either had no maps, or did not attempt statistical 
inference on any of the mapped quantities.)   
 These are disturbing but unfortunately quite 
representative statistics.  A frustrated Journal of 
Climate editor (who wishes to remain anonymous) 
wrote in this context, "The use and misuse of 
statistical tests is an important topic to me – I see a lot 
of abuses as J. of Climate editor, and sometimes I 
feel that our field is not even science."  Although this 
may seem to be an extreme viewpoint, it is 

undeniable that the consequences of the widespread 
and continued failure to address the issue of multiple 
hypothesis testing are overstatement and over-
interpretation of the scientific results, to the detriment 
of the discipline.   
 The purposes of this paper are to highlight 
problems relating to interpretation of multiple 
statistical tests, to provide some of the history related 
to this issue, and to describe and illustrate a 
straightforward and statistically principled approach – 
control of the False Discovery Rate (FDR) – to 
protecting against overstatement and over-
interpretation of multiple testing results.   
 
2. Exposition of the multiple-testing problem 
 Computation of a single hypothesis test 
involves defining a null hypothesis (H0), which will be 
rejected in favor of an alternative hypothesis (HA) if a 
sufficiently extreme value of the test statistic is 
observed (e.g., Wilks 2011).  Rejection of H0 at a test 
level α occurs if the test statistic is sufficiently extreme 
that the probability (called the p-value) of observing it 
or any other outcome even less favorable to H0, if that 
null hypothesis is true, is no larger than α.  If H0 is 
rejected with α = 0.05 (the most common, although an 
arbitrary, choice), the result is said to be significant at 
the 5% level1.   
 Although perhaps intuitively attractive, it is 
quite incorrect to interpret a p-value as the probability 
that the null hypothesis is true, given the evidence 
expressed in the observed test statistic (e.g., 
Ambaum 2010).  The correct interpretation is 
opposite: a p-value is a probability related to the 
magnitude of a test statistic, assuming the truth of H0.  
The implication is that any true null hypothesis will be 
rejected with probability α (if the test has been 
formulated correctly), so that a collection of N0 
hypothesis tests whose null hypotheses are all true 
will exhibit, on average, α N0 erroneous rejections.  
However, any particular collection of N0 hypothesis 
tests whose null hypotheses are all true will rarely 
exhibit exactly α N0 erroneous rejections, but rather 
the number of erroneous rejections will be a random 
variable.  That is, the number of erroneous rejections 
will be different for different (possibly hypothetical) 
batches of the same kind of data, and for any 
particular batch this number will behave as if it had 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 In the atmospheric sciences literature this conclusion is 
often expressed as significance "at the 95% level", but that 
convention is inconsistent with mainstream terminology (e.g., 
Jolliffe 2004).   
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been drawn from a probability distribution whose 
mean is α N0.   
 If the results of these N0 hypothesis tests are 
statistically independent, then the probability 
distribution for the number of erroneously rejected null 
hypotheses will be binomial, yielding the probabilities 
for the possible numbers of erroneously rejected 
tests, x, 

Pr{x} =
N0 !

x !(N0 − x)!
α
x
(1 − α )

N0−x , x = 0, 1,...,N0          (1) 

One implication of this equation is that, unless N0 is 
relatively small, erroneously rejecting at least one of 
the true null hypotheses is nearly certain: for example 
if α = 0.05 and N0 = 100 this probability is 0.994.  
Thus some true null hypotheses will almost always be 
erroneously rejected in any realistic multiple testing 
situation involving gridded data.  Even though this 
number will be α N0 on average, Equation (1) 
specifies nonnegligible probabilities for numbers of 
erroneous rejections that may be substantially larger 
than α N0.  When the members of the collection of 
hypothesis tests are not independent, which is the 
usual situation for gridded data, Equation (1) is no 
longer valid and the probabilities for numbers of 
erroneous rejections larger than α N0 are even higher.   
 The problem of interpreting the results of N 
multiple simultaneous hypothesis tests is further 
complicated by the fact that the fraction of true null 
hypotheses N0/N is unknown, and also that some of 
the NA = N – N0 false null hypotheses may not be 
rejected.  How, then, can a spatial field of hypothesis 
test results be interpreted in a statistically principled 
and meaningful way? 
 
3. Historical development of multiple testing in the 
       atmospheric sciences  
3a.  The Walker test 
 The question just posed has been 
confronted in the atmospheric sciences for more than 
a century, apparently having been addressed first by 
Walker (1914).  Katz and Brown (1991) and Katz 
(2002) provide a modern perspective on Walker's 
thinking on this subject.   
 Walker realized that an extreme value of a 
sample statistic (e.g., a small p-value) is progressively 
more likely to be observed as more realizations of the 
statistic (e.g., more hypothesis tests) are examined, 
so that a progressively stricter standard for statistical 
significance must be imposed as the number of tests 
increases.  In order to limit the probability of 
erroneously rejecting one or more of N0 true null 
hypotheses to an overall level α0, Walker's criterion is 
that only individual tests with p-values no larger than 
αWalker should be regarded as significant, where  

 αWalker = 1 − (1 − α0 )
1/N0      .       (2) 

This formula can be derived from the fact that a p-
value for a test involving a true null hypothesis is 
equally likely to be any real number between zero and 
one (e.g., Wilks 2006).  Of course αWalker = α0 for a 

single (N0 = 1) test.  In order to limit the probability of 
erroneously rejecting any of N0 = 100 true null 
hypothesis tests to the level α0 = 0.05, only those 
tests having p-values smaller than αWalker = .000513 
would be regarded as significant according to this 
criterion.  In contrast, as noted above, naively 
evaluating each of N0 = 100 tests having true null 
hypotheses at the α0 = 0.05 level (i.e., ignoring the 
multiple-testing problem) results in a 0.994 probability 
that at least one true null hypothesis is erroneously 
rejected.   
 Equation (2) was derived under the (often 
unrealistic) assumption that the results of the 
individual tests are statistically independent, but in 
practice it is robust to (only modestly affected by) 
deviations from this assumption (Katz and Brown 
1991, Wilks 2006).  On the other hand, although 
Equation (2) will yield relatively few rejections of true 
null hypotheses, the Walker criterion is quite strict 
since αWalker ≈ α0/N, which compromises the 
sensitivity of the procedure for detecting false null 
hypotheses.   
 
3b.  The "field significance" approach 
 Von Storch (1982) and Livezey and Chen 
(1983) cast the problem of evaluating multiple 
hypothesis tests as a "meta-test", or a "global" 
hypothesis test whose input data are the results of N 
"local" hypothesis tests.  Because the individual local 
tests often pertain to a grid or other geographic array, 
they can be thought of as composing a "field" of test 
results.  Accordingly this approach to multiple testing 
is generally referred to as assessment of "field 
significance" (Livezey and Chen 1983).  It has 
become the dominant paradigm for multiple testing in 
the atmospheric sciences, especially when the 
individual hypothesis tests pertain to a network of 
geographic locations.   
 The global null hypothesis is that all of the 
local null hypotheses are true, so that failure to reject 
the global null hypothesis implies that significant 
results have not been detected anywhere in the field 
of individual local tests.  In the idealized case that the 
local null hypotheses are statistically independent, the 
binomial distribution (Equation 1) allows calculation of 
the minimum number of locally significant tests 
required to reject a global null hypothesis – i.e., to 
achieve field significance.  For example, again if N = 
100 independent tests and α0 = 0.05, the global null 
hypothesis implies N0 = N = 100 so that on average 
(over many hypothetical realizations of the single 
testing situation for which we have data) five of the 
100 local null hypotheses are expected to be rejected.  
But in order to reject the global null hypothesis, an 
unusually large number of local test rejections must 
be observed.  Equation (1) specifies that ten or more 
such rejections are required in order to have smaller 
than αglobal = α0 = 0.05 probability of observing this or 
a more extreme result if the global null hypothesis is 
true.  If fewer of these independent local tests have p-
values smaller than α0 = 0.05, then none of them are 
regarded as significant according to this criterion.   
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 Assuming statistical independence among 
the local test results is a best-case situation, so that 
the usual condition of spatial correlation among the 
local gridpoint tests implies that even more local test 
rejections than implied by Equation (1) are required in 
order to achieve field significance.  However, exactly 
how many local test rejections are required depends 
on the nature of the underlying spatial correlation, and 
this threshold may be difficult to determine in a 
particular multiple-testing setting.  One approach is to 
try to estimate an "effective number of independent 
tests" Neff < N, and to use this value in Equation (1), 
although often Neff cannot be rigorously estimated 
(von Storch and Zwiers 1999).  Livezey and Chen 
(1983) also suggest estimating the frequency 
distribution for numbers of locally significant tests 
using Monte Carlo methods (i.e., randomly 
resampling the available data in a manner consistent 
with the global null hypothesis, e.g., Mielke et al. 
1981, Zwiers 1987).  This approach can require 
elaborate and computationally expensive calculations, 
especially if the data exhibit both temporal and spatial 
correlations (Wilks 1997), and in some test settings 
an appropriate Monte Carlo algorithm may not be 
available.  Ignoring the effect of spatial correlation 
leads to highly inaccurate test results when using this 
method, with global null hypotheses being rejected 
much more frequently than specified by the nominal 
αglobal (von Storch 1982, Livezey and Chen 1983, 
Wilks 2006).   
 
3c.  False Discovery Rate (FDR) 
 The field significance procedure described in 
the previous section is much better than the common 
but naive approach characterized by the quotation in 
the title of this paper, according to which any 
nominally rejected local null hypothesis is concluded 
to be false.  However it suffers from several 
drawbacks, some of which have already been 
mentioned: 
(i)  Because of the discreteness of counts of locally 
significant tests, the overall field significance can be 
conservative (rejecting true global null hypotheses 
less frequently than a specified αglobal).  In the 
example above when N0 = 100 independent tests and 
αglobal = 0.05, requiring ten local test rejections will 
lead to rejection of the global null hypothesis with 
probability 0.028 < αglobal, but adopting the less strict 
requirement of at least nine local tests significant will 
be inappropriate because the corresponding 
probability would then be 0.063.  This effect will also 
slightly degrade the test sensitivity (ability to detect 
violations of the global null hypothesis).   
(ii)  The global test statistic involves only the numbers 
of locally significant tests but not their p-values, so 
that vanishingly small local p-values can provide no 
more evidence against the global null hypothesis than 
do local tests for which p ≈ α0.  Test sensitivity is 
consequently less than optimal because not all the 
available information is used (Zwiers 1987, Wilks 
2006).   

(iii)  Correlation among the local tests greatly inflates 
the probability of erroneously rejecting the global null 
hypothesis.  Accounting for the spatial correlations 
using Monte Carlo methods may be difficult and 
expensive, particularly when temporal correlation is 
also present, and in some cases appropriate Monte 
Carlo methods may not be available.   
(iv)  Having declared field significance, many of the 
local tests exhibiting p < α0 will have resulted from 
random and irreproducible fluctuations rather than 
physically real effects (Ventura et al. 2004, Wilks 
2006).  This problem is compounded in the presence 
of spatial correlation because these spurious 
"features" will tend to exhibit geographic coherence, 
potentially leading the analyst to over-interpret the 
data in an attempt to explain them.   
 All of these problems can be addressed by 
controlling the False Discovery Rate (FDR) when 
analyzing the results of multiple hypothesis tests.  The 
FDR is the statistically expected (i.e., average over 
analyses of hypothetically many similar testing 
situations) fraction of local null hypothesis test 
rejections ("discoveries") for which the respective null 
hypotheses are actually true.  An upper limit for this 
fraction can be controlled exactly for independent 
local tests, and approximately for correlated local 
tests, regardless of the unknown proportion N0/N of 
local tests having true null hypotheses.  Benjamini 
and Hochberg (1995) first described this method, with 
a primary focus on medical statistics (e.g. Storey and 
Tibshirani 2003).  Ventura et al. (2004) introduced its 
use for multiple hypothesis tests pertaining to gridded 
atmospheric data, and Wilks (2006) demonstrated its 
relationship to the traditional field significance 
framework.   
 Although it is still not well known within the 
atmospheric sciences, the FDR method is the best 
available approach to analysis of multiple hypothesis 
test results, even when those results are mutually 
correlated.  Its criterion of limiting the fraction of 
erroneously rejected null hypotheses is more relevant 
to scientific interpretation than is the traditional 
approach of limiting the probability that any given 
local test yields an erroneous rejection (Storey and 
Tibshirani 2003, Ventura et al. 2004).  The remainder 
of this paper reviews the mechanics of implementing 
the FDR method, and illustrates its use in an artificial-
data setting that highlights its advantages and 
emphasizes its robustness to the usual strong spatial 
correlation among the local tests.   
 
4. A principled and straightforward solution –  
       controlling the False Discovery Rate  
 The FDR procedure is similar in spirit to 
Walker's approach (Section 3a) in that it requires a 
higher standard (i.e., p-values smaller than a nominal 
local test level α0) in order to reject local null 
hypotheses.  It can also be interpreted in the field 
significance framework described in Section 3b.  The 
algorithm operates on the collection of p-values from  
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Figure 1.  Hypothetical 3720-gridpoint domain, representing the northern hemisphere from 20˚N to 80˚N.  
Concentric bold outlines indicate regions where local null hypotheses are not true.   

 

 
Figure 1.  Hypothetical 3720-gridpoint domain, representing the northern hemisphere from 20˚N to 80˚N.  Concentric bold outlines 
indicate regions where local null hypotheses are not true.   
 
N local hypothesis tests, pi, i = 1, . . ., N, which are 
first sorted in ascending order.  Using a standard 
notation, these sorted p-values are denoted using 
parenthetical subscripts, so that p(1) ≤ p(2) ≤ . . . ≤ p(N).  
Local null hypotheses are rejected if their respective 
p-values are no larger than a threshold level p*FDR 
that depends on the distribution of the sorted p-
values: 
p *FDR = max

i=1, . . ., N
[ p(i) :  p(i) ≤ αFDR (i / N )]    ,       (3) 

where αFDR is the chosen control level for the FDR.  
That is, the threshold p*FDR for rejecting local null 
hypotheses is the largest p(i) that is no larger than the 
fraction of αFDR specified by i/N.   
 The Walker criterion (Equation 2) is very 
nearly the same as Equation (3) if i = 1, so that the 
FDR procedure will be more sensitive for detecting 
false null hypotheses to the extent that Equation (3) is 
satisfied by a p(i) with i > 1, even as the expected 
fraction of false detections is maintained below αFDR.  
In addition the FDR procedure can be interpreted as 
an approach to field significance.  If none of the 
sorted p-values satisfy the inequality in Equation (3), 
then none of the respective null hypotheses can be 
rejected, implying also nonrejection of the global null 
hypothesis that they compose.  Furthermore the size 
of that global hypothesis test (i.e., the probability of 
rejecting a global null hypothesis if it is true), is αglobal 
= αFDR (Wilks 2006).   
 Even though Equation (3) assumes 
statistical independence among the local test results, 
the FDR procedure is approximately valid even when 
those results are strongly correlated, unlike the use of 
Equation (1) to evaluate numbers of locally significant 
tests.  This property greatly simplifies statistically 
principled evaluation of multiple hypothesis test 
results, since there is no need for elaborate Monte 
Carlo simulations.  Indeed, having obtained the N 
local p-values, the most complicated computation 
required is merely their sorting into ascending order 
so that Equation (3) can be evaluated.   
 
 
 

5. Illustrative Examples  
5a.  Structure of the synthetic examples 
 It is instructive to compare the multiple-
testing procedures in an artificial yet relatively realistic 
setting, so that their properties can be evaluated in 
the context of a completely known data-generating 
process.  In this section, synthetic data will be defined 
on the N = 3720-point grid indicated in Figure 1.  The 
vertical dimension represents the 31 latitudes from 
20˚N to 80˚N, at increments of 2˚, and the horizontal 
dimension represents 360˚ of longitude at 3˚ 
increments, with a cyclic boundary.  The four 
concentric bold outlines indicate regions, ranging in 
extent from 0.9% to 19.2% of the total number of 
gridpoints, where local null hypotheses will not be 
true.   
 The effects on the multiple-testing results of 
eight levels of spatial correlation of the underlying 
synthetic data will be investigated.  Figure 2 shows 
the spatial autocorrelation functions for these eight 
levels, of the form  

r(d ) = exp(−c  d
2

)   ,   (4) 
where d is the great-circle distance between two 
gridpoints,  

d = Re  cos
−1

[sinφ1 sinφ2 + cosφ1 cosφ2 cos(λ1 − λ2 )]   .(5) 

Here φ denotes latitude, λ denotes longitude, and Re 
= 6.371 x 103 km is the earth radius.  These eight 
spatial autocorrelation functions range in e-folding 
distance from 0.1 x 103 km (nearly spatially 
independent) to 10 x 103 km (very strongly 
dependent).  The star symbols in Figure 2 indicate 
data for spatial autocorrelation of the northern 
hemisphere 500-mb height field taken from Polyak 
(1996), which are closely approximated by the heavy 
c = 0.42 (e-folding distance = 1.54 x 103 km) curve.   
 The underlying synthetic data are random 
Gaussian fields with spatial correlations governed by 
Equation (4), generated using methods described in 
Wilks (2011, p. 499).  The statistical distribution of the 
generated values at each gridpoint is standard 
Gaussian, i.e., having zero mean and unit variance.  
Simulations using c = 0.42 represent the statistical 
properties of northern hemisphere 500-mb height  
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Figure 2.  Eight spatial autocorrelation functions of the form 
in Equation (4).  Star symbols indicate correlations for 
northern hemisphere 500-mb heights from Polyak (1996).   
 
fields.  Although the correlation function in Equation 
(4) does not represent the characteristic wave 
structures in these fields, these are not important for 
the purpose of illustrating the effect of spatial 
correlation on the multiple testing.  For each 
realization of 3720 local hypothesis tests, 25 of these 
fields were generated and averaged, producing the 
test statistics for one-sample t tests having 24 
degrees of freedom at each gridpoint.  In experiments 
where some of the local null hypotheses are false, 
gridpoint sample means within one of the outlines 
shown in Figure 1 were increased uniformly by 
amounts Δµ ranging from 0.05 to 1.00.   
 
5b.  Global test properties 
 Figure 3 illustrates the operation of the FDR 
procedure (diagonal lines), in contrast to the naive 
approach of accepting alternative hypotheses at any 
gridpoint for which a locally significant result occurs 
(dashed horizontal line).  This figure corresponds to a 
particular realization that will be examined later in 
more detail.  The simulated data were generated with 
c = 0.42 (realistic spatial autocorrelation), NA = 156 
(4.2% of total gridpoints with false null hypotheses), 
and using the relatively large alternative-hypothesis 
mean Δµ = 0.7.  The figure shows the smallest 350 of 
the 3720 sorted p-values p(i) as a function of their 
rank, i.  The dashed diagonal line indicates the 
threshold criterion defined by Equation (3) using αFDR 
= 0.10, according to which p*FDR = 0.003998 = p(150).  

That is, in this particular realization the local tests 
having the 150 smallest p-values are declared to 
exhibit statistically significant results.  Of these, 144 
are correct rejections, indicated by the small symbols 
below the dashed diagonal line.  The twelve circles 
above the dashed diagonal line represent false null 
hypotheses that were not rejected.  The six X's below  
the dashed diagonal represent true null hypotheses 
that were erroneously rejected, yielding an achieved 
FDR = 6/150 = 0.04.  The inset shows a closer view 
of the points within the red box.   
 The dotted diagonal line shows the threshold 
from Equation (3) when αFDR = 0.20, in which case 
p*FDR = 0.009502 = p(183).  In this case all NA = 156 
false null hypotheses are detected, but at the expense 
of erroneously rejecting 27 true null hypotheses, 
yielding an achieved FDR = 27/183 = 0.15.  In 
contrast, the naive approach of rejecting any local null 
hypothesis for which the p-value is less than α0 = 0.05 
(dashed horizontal line) detects all 156 false null 
hypotheses, but at the expense of erroneously 
rejecting 189 true null hypotheses (X's and small 
symbols above the dashed diagonal), yielding an 
unacceptably large achieved FDR = 189/345 = 0.55:  
a majority of the nominally significant results are 
spurious!   
 Figure 4 illustrates the performance of the 
FDR procedure in terms of achieved global test 
levels, as a function of the degree of spatial 
correlation.  That is, in the situation of all local null 
hypotheses being true, the achieved level is the 
probability that the global null hypothesis will be 
rejected (i.e., that at least one of the sorted p-values 
will satisfy the condition in Equation 3), which ideally 
will equal αglobal = αFDR.  These probabilities are 
approximated in Figure 4 as the corresponding 
relative frequencies over 105 simulated global tests.  
As expected, these achieved levels are approximately 
correct for small spatial correlations, but then decline 
fairly quickly and stabilize at about half the nominal 
levels.  Thus the FDR procedure is robust to the 
effects of spatial correlation, yielding a somewhat 
conservative global test when the spatial correlation is 
moderate or strong, which is consistent with prior 
results (Wilks 2006).  This result suggests that, for 
data grids exhibiting moderate to strong spatial 
correlation, approximately correct global test levels 
can be produced using the FDR procedure by 
choosing αFDR = 2αglobal.   
 In sharp contrast, the achieved test levels for 
the Livezey-Chen counting procedure, also with no 
adjustment for spatial correlation, is very strongly 
permissive.  For example using Equation (1) and 
assuming spatial independence yields a requirement 
for at least 208 locally significant tests (5.6% of local 
null hypotheses rejected) for field significance with α0 
= αglobal = 0.05.  This criterion produces achieved 
global test levels of 0.0907 and 0.3517 when the e-
folding distances are 0.2 and 1.54 x 103 km, 
respectively (results not shown in the figure).  The 
naive interpretation that any significant local test 
implies field significance is even worse, as it produces  
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Figure 3.  Illustration of the FDR criterion using αFDR = 0.10 (dashed diagonal line) and αFDR = 0.20 (dotted diagonal line), and the 
naive approach of rejecting any local test with p-value smaller than α0 = 0.05 (dashed horizontal line).  Plotted points are the 
smallest 350 sorted p-values of 3720 local tests.  Points below the diagonal lines represent significant results according to the two 
FDR control levels.  X's represent 6 tests with true null hypotheses that were erroneously rejected, and circles represent false local 
null hypotheses that were not rejected, when αFDR = 0.10.  Inset shows closer view of points within the red box.  The 345 tests with 
p-values smaller than α0 = 0.05 would be declared significant under the naive procedure, even though a majority of these null 
hypotheses are true.  
 
an achieved global test level of unity:  at least one of 
the 3720 local tests is virtually certain to exhibit a 
spurious null hypothesis rejection, regardless of the 
strength of the spatial correlation within the range 
considered in Figure 4.   
 Figure 5 shows global test power (sensitivity 
for detection of false global null hypotheses) as 
functions of both the numbers of locally significant 
tests NA (Figure 1), and alternative-hypothesis 
magnitudes Δµ when the local null hypotheses are 
false, for the realistic case of 1.54 x 103 km e-folding 
distance.  Red curves show results for the FDR 
approach when αFDR = 0.10, which Figure 4 indicates 
should yield global tests near the 5% level.  Black 
curves show results for the Livezey-Chen counting 
procedure with αglobal = 0.05, which requires at least 
365 (9.8% of 3720) locally significant tests for this 
degree of spatial correlation2.  When Δµ  = 0 (i.e., all 
local null hypotheses are true) both methods yield 5% 
of global tests rejected, which is the correct level.  Not 
surprisingly, probabilities for rejecting the global null 
hypotheses increase with both the numbers and 
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Note that it is not clear how to design a Monte Carlo 
procedure to determine this cutoff for field significance in the 
present setting because it involves a one-sample test, but 
the 365-count threshold can be computed for this artificial 
example because the underlying data-generating process is 
known.   

magnitudes of false local null hypotheses.  For large 
numbers of false local null hypotheses and relatively 
small Δµ the Livezey-Chen procedure yields 
somewhat greater power, although as will be seen 
shortly this comes at the cost of many more 
erroneous rejections of true local null hypotheses.  
For the smaller numbers of false local null 
hypotheses, the power of the Livezey-Chen counting 
procedure is strongly limited, regardless of Δµ.  Even 
if Δµ is large enough for every false null hypothesis to 
be detected with near certainty, when there are fewer 
than 365 of these it is not assured that the remainder 
of the 365-count threshold will be met by false local 
test rejections.  This is a serious deficiency of the 
counting procedure when the field of tests contains 
relatively few false null hypotheses, which derives 
from the fact that the magnitudes of the smallest local 
p-values do not contribute to the global test.   
 
5c.  Local test interpretations 
 Often the primary interest will be 
interpretation of the locations and spatial patterns of 
the locally significant test results.  Reliability of these 
interpretations will of course be enhanced to the 
extent that they are minimally contaminated with 
erroneous rejections of true local null hypotheses.  
Figure 6a shows false discovery rates for the FDR 
method with αFDR = 0.10 (red), the Livezey-Chen  
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Figure 4.  Achieved global test levels (probabilities of 
rejecting true global null hypotheses) when using the FDR 
procedure, as a function of spatial correlation strength.  For 
moderate and strong spatial correlation, approximately 
correct results can be achieved by choosing αFDR = 2αglobal.   
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Figure 5.  Percent of global null hypotheses rejected (global 
test power, or sensitivity) for the Livezey-Chen counting 
procedure with αglobal = 0.05 (black) and the FDR procedure 
using αFDR = 0.10 (red), as functions of both numbers of false 
local null hypotheses and the magnitudes of their nonzero 
means Δµ for e-folding distance 1.54 x 103 km.   

counting approach with α0 = αglobal = 0.05 (black), and 
the naive approach of rejecting any local null 
hypothesis whose p-value is no larger than the 
nominal α0 = 0.05 (brown); again as functions of 
numbers of false local null hypotheses and 
alternative-hypothesis magnitudes Δµ, for the realistic 
e-folding distance 1.54 x 103 km.  The plotted values 
are averages over 103 realizations, so that for 
example the quantities contributed to the averages 
from the particular realization shown in Figure 3 are  
6/150 = 0.04 for the FDR procedure, 189/345 = 0.55 
for the naive procedure, and zero for the Livezey-
Chen counting procedure because fewer than the 
required 365 local tests were significant at the 5% 
level (the global null hypothesis could not be 
rejected).  As expected the FDR procedure controls 
the false discovery rates very tightly.  The Livezey-
Chen procedure also exhibits small false discovery 
rates for the smallest number of false local null 
hypotheses, but primarily because very few global null 
hypotheses can be rejected regardless of the 
magnitude of Δµ  (compare Figure 5).  For larger 
numbers of false local null hypotheses, the Livezey-
Chen yields much larger false discovery rates.  Worst 
performance of all is exhibited by the naive 
procedure, for which nearly all local test rejections are 
incorrect when Δµ is small, and which converges to 
the Livezey-Chen result for large Δµ and NA since in 
these cases the Livezey-Chen procedure declares 
field significance in nearly all realizations.   
 Figure 6b shows the corresponding result for 
average proportion of erroneously rejected true local 
null hypotheses, for the Livezey-Chen (black) and 
FDR (red) procedures.  The proportion of true local 
null hypotheses rejected is quite small for the FDR 
procedure.  It is also small for the Livezey-Chen 
procedure for small NA, but approaches the nominal 
α0 = 0.05 for sufficiently large Δµ and NA.  Results for 
the naive procedure are not shown because they yield 
5% of true null hypotheses rejected on average for all 
values of Δµ and NA.   
 To help visualize the foregoing more 
concretely, Figure 7 shows maps for a particular 
realization, interpreted according to (a) the FDR 
procedure with αFDR = 0.10, and (b) the naive 
approach using α0 = 0.05.  Correct local null 
hypothesis rejections are indicated by plus symbols, 
failures to reject false local null hypotheses are 
indicated by circles, and erroneous rejections of true 
null hypotheses are indicated by X's.  These maps 
correspond to the ranked p-values shown in Figure 3, 
with NA = 156, Δµ = 0.7, and e-folding distance 1.54 x 
103 km.  In Figure 7a the FDR procedure fails to reject 
twelve of the 156 false null hypotheses, but 
erroneously rejects only six true null hypotheses.  The 
result is that the FDR procedure locates the true 
signal very effectively while introducing very little 
noise.  By contrast, in Figure 7b the naive procedure 
locates all 156 false null hypotheses, but also 
erroneously indicates another 189 nominally 
significant gridpoints.  The very large additional noise  
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Figure 6.  False discovery rates (a) and proportion of true local null hypotheses rejected (b), for the FDR method with αFDR = 0.10 
(red), the Livezey-Chen counting approach with α0 = αglobal = 0.05 (black), and the naive approach with α0 = 0.05 (brown), as 
functions of numbers of false local null hypotheses and alternative-hypothesis magnitudes Δµ, using the e-folding distance 1.54 x 
103 km.   
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Figure 7.  Maps of local test decisions made by (a) the FDR procedure with αFDR = 0.10, and (b) the naive 
approach using α0 = 0.05.  Correct local null hypothesis rejections are indicated by plus symbols, failures 
to reject false local null hypotheses are indicated by circles, and erroneous rejections of true null hypotheses 
are indicated by X’s.  Results correspond to the ranked p-values shown in Figure 3, with NA = 156, Δμ = 0.7, 
and e-folding distance 1.54 x 103 km.   
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level in Figure 7b would make physical interpretation 
of this map difficult, possibly leading an analyst to  
stretch his or her imagination to rationalize the many 
spurious local test rejections, which may appear to be 
physically coherent structures because of the strong 
spatial autocorrelation in the underlying data.  Again, 
in this case the Livezey-Chen procedure would fail to 
reject the global null hypothesis, leading an analyst to 
doubt the reality of any of the local test rejections 
shown in Figure 7b.   
 
6. Summary, conclusions and recommendation 
 The problem of simultaneously evaluating 
results of multiple hypothesis tests, often at a large 
network of gridpoints or other geographic locations, is 
widespread in meteorology and climatology.  
Unfortunately, the dominant approach to this problem 
in the literature is to naively examine each gridpoint 
test in isolation, and then to report as "significant" any 
result for which a local null hypothesis is rejected, with 
no adjustment for the effects of test multiplicity on the 
overall result.  As a consequence, language similar to 
the hypothetical quotation in the title of this paper is 
distressingly common, which immediately flags the 
results portrayed as almost certainty overstated.  This 
statistically unprincipled practice should be 
unacceptable both to reviewers and editors of 
scientific papers.   
 The necessity of correcting for the effects of 
simultaneous multiple test results has been known in 
the atmospheric sciences literature for more than a 
century, dating at least from Walker (1914).  More 
recently, this problem has been cast as a meta-test 
on the collective results of many individual test 
results, and known as the assessment of "field 
significance" (Livezey and Chen 1983).  Although the 
field significance approach is a very substantial 
advance over the usual naive procedure of ignoring 
the effects of multiple testing, it suffers from several 
drawbacks.  One of these is that the approach lacks 
statistical power (sensitivity for detection of global null 
hypothesis violations) when the features to be 
detected occupy a small fraction of the domain.  
Another is that it is very sensitive to the usual strong 
spatial correlation among the individual gridpoint 
tests, and elaborate Monte Carlo calculations are 
generally required to compensate (Livezey and Chen 
1983), particularly if the underlying data exhibit 
temporal autocorrelation as well (Wilks 1997).  In 
some settings, such as that used in Section 5, 
appropriate Monte Carlo procedures may not be 
available at all.  Furthermore, even when the overall 
test results are strong enough to achieve field 
significance, many of the nominally significant 
gridpoint tests will have resulted from spurious local 
null hypothesis rejections, which complicates the 
physical interpretation.   
 Controlling the FDR (Benjamini and 
Hochberg 1995, Ventura et al. 2004, Wilks 2006) has 
many favorable attributes, including only modest 
sensitivity to spatial autocorrelation in the underlying 
data.  The examples employed here were constructed 

without temporal autocorrelation in order to simplify 
the exposition.  However, because the FDR method is 
robust to spatial autocorrelation, effects of temporal 
autocorrelation can be addressed with appropriate 
testing procedures (e.g., Katz 1982, Zwiers and 
Thiébaux 1987, Wilks 2011) in the individual gridpoint 
calculations, so that complex procedures addressing 
both types of autocorrelation simultaneously (e.g., 
Wilks 1997) are unnecessary.  Indeed, the method is 
applicable to collections of multiple hypothesis test 
results, regardless of the mathematical forms of those 
tests, so long as the individual tests operate correctly 
(i.e., with proportion of true null hypotheses rejected 
close to the nominal test level α0).   
 Perhaps the greatest advantage of the FDR 
approach is that, by design, a control limit is placed 
on the fraction of significant gridpoint test results that 
are spurious, which greatly enhances the 
interpretability of the spatial patterns of significant 
results.  Because the FDR approach is not only 
effective, but is also easy and computationally fast, it 
should be adopted whenever the results of 
simultaneous multiple hypothesis tests are reported or 
interpreted.  Its main computational demand is only 
that the individual gridpoint p-values be sorted and 
examined in light of Equation 3.  The usual strong 
spatial correlation encountered in gridded 
atmospheric data can be accommodated by choosing 
αFDR = 2αglobal, as illustrated in Figure 4.  The 
consequence of employing this statistically principled 
procedure — in stark contrast to the all-too-common 
naive approach — is that there is much reduced 
scope for overstatement and over-interpretation of the 
results.  In particular the analyst is not tempted to 
construct possibly fanciful rationalizations for the 
many spurious local test rejections that competing 
methods produce, which may appear to be physically 
coherent structures because of the strong spatial 
autocorrelation.   
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