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1. INTRODUCTION  

 
Wind energy is one of the fastest-growing 

segments of the world energy market, offering a clean 
and abundant source of electricity to meet growing 
demands. However, wind energy facilities can have 
detrimental effects on wildlife, especially birds and 
bats. Monitoring tools are needed to better quantify 
the potential and ongoing impacts of wind 
installations.  

Radar monitoring systems based on marine 
navigation radar are often used to track bird and bat 
migration near proposed wind sites. Unlike camera 
and acoustic based methods, radar works at great 
distances, providing resolved range information. 
However, the ability to distinguish between bats and 
different varieties of birds is still not practically 
achieved. This capability could enable site selection 
that favors more vulnerable species, such as bats and 
raptors. Radar signatures of biological targets have 
been studied using dual polarized weather radars 
(Cachmann and Zrnic 2008; Melnikov et al. 2014; 
Stepanian et al. 2014), although primarily for the 
purpose of preventing contamination of 
meteorological data. Recent evidence suggests that 
polarimetric signatures of avian targets have an 
orientation dependence that differs by species 
(Stepanian et al. 2014).  

This paper explores the broad species-based 
classification potential of polarimetric and Doppler 
radar measurements. Section 2 contains a summary 
of hardware and data collection methods, followed by 
a brief description of the detection and preprocessing 
algorithms used (Section 3). Section 4 provides an 
overview of the two-stage feature extraction and 
analysis approach. The first stage is a novel 
technique for determining each birds’ instantaneous 
behavioral state (i.e. flapping/gliding), described in 
Section 5. When the behavioral state is known, a 
second set of features is extracted to enable 
comparison between birds of different species. This 
process will be covered in Section 6. Preliminary 
results and broader impacts are reviewed in Section 
7.  
 
 
 
 

2. DATA COLLECTION PROCEDURE 

 
A dual-polarized X-band mobile Doppler radar 

(“UMass X-Pol”), shown in Figure 1, was used to 
collect observations of migrating birds. With 12.5 kW  
(6.25 kW per polarization) peak transmit power and a 
narrow 1.25º parabolic dish antenna, the UMass X-
Pol radar is sensitive enough to detect birds at ranges 
as great as 20km.  

To collect study data, the radar was parked in 
a stationary position, looking eastward, with the 
antenna fixed at ten degrees elevation. Time series 
in-phase and quadrature channel radar data was 
logged as birds moved through the stationary beam. 
Data was collected during clear air conditions in 
Western, Massachusetts, over ten separate evenings 
during Fall 2014. The full dataset contains several 
thousand bird observations of unknown species. 
 

3. DETECTION, PREPROCCESING, AND INITIAL 
FEATURE EXTRACTION  

 
Bird observations were a small subset of the 

hundreds of gigabytes of original unprocessed radar 
data. To extract just observations of interest, ground 
clutter was removed and raw data were coherently 
integrated to improve the signal-to-noise ratio. Local 
maxima, exceeding an SNR threshold, were detected 
in the range-time domain. A detected bird would be 
present in the beam for an extended time, so power at 
times around each local maximum were summed and 
compared to a second threshold. Observations 
exceeding the second threshold were classified as 
bird detections and added to the filtered data set. 

Standard meteorological polarimetric products, 
including differential reflectivity 𝑍𝑑𝑟, correlation 

coefficient  𝜌ℎ𝑣, and differential phase 𝜓𝑑𝑝were 

computed for each bird, at each time step over the 
duration of the observation. Differential reflectivity 𝑍𝑑𝑟, 

a measure of target aspect ratio, is the ratio of 
reflectivity at horizontal polarization 𝑍ℎ to reflectivity in 

the vertical polarization 𝑍𝑣. 

 
 

𝑍𝑑𝑟 = 10 ∗ log (
𝑍ℎ

𝑍𝑣
) (1) 

 
Correlation coefficient  𝜌ℎ𝑣 is a measure of the 

similarity between both polarizations of the received 
echo voltages (𝐸ℎ and 𝐸𝑣): 
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𝜌ℎ𝑣 =  

|〈𝐸ℎ𝐸𝑣 ∗〉|

√〈|𝐸ℎ|2〉〈|𝐸𝑣|2〉
 (2) 

 
Differential phase 𝜓𝑑𝑝 is the difference 

between H-polarized and V-polarized echo phase, 
and is a measure of target shape. 

 
 𝜓𝑑𝑝 = 𝜓ℎ − 𝜓𝑣 =  ∠〈𝐸ℎ𝐸𝑣 ∗〉 (3) 

 
In addition to extracting polarimetric features, a 

horizontally and vertically polarized Doppler 
spectrogram was produced for each bird. The 
spectrogram shows the way in which the Doppler 
spectrum changes in time, including torso speed and 
micro-Doppler signatures associated with moving 
parts around the torso (i.e. flapping). 

 If the total received signal at the radar, for a 
single range bin, is given by 𝑟𝑥(𝑛), where 𝑛 is the 

sample index, the Doppler spectrogram 𝑠𝑔(𝑤, 𝑡) of 

this signal is: 
 

 
𝑠𝑔(𝑤, 𝑡) =  |∑ 𝐻𝑎𝑚(𝑞) ∗ 𝑟𝑥(𝑞 + (𝑡 − 1)(𝑄 − 𝑀))
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(4) 

 
where 𝑀 is the length of overlap in the time 

series’, of length 𝑄, used to produce each subsequent 

spectrum, 𝐻𝑎𝑚(𝑞) is the Hamming window function, 

𝑤 denotes frequency filter bin, and 𝑡 is the time stamp 

corresponding to each spectrum. Micro-Doppler 
features are isolated by normalizing the bird’s torso 
velocity to the zero-velocity frequency bin in the 
spectrogram image.  

 
4.  FEATURE EXTRACTION APPROACH 
 

When a bird is engaging in different behaviors 
(i.e. flapping/gliding states), its body shape and 
orientation change, causing it to appear differently to 
the radar. Figure 1 shows how Doppler and 
polarimetric features change in time as one bird 
cycles through behavioral states. For the bird shown 
in Figure 1, gliding behavior is characterized by small 
spectrum width (A), lower H-polarized return power 
(B), and high correlation coefficient (C). Lower and 
more static values of differential reflectivity (D) are 
also observed.  These trends differ by species and 
orientation. 

 
Figure 1 – Time changing radar signatures for a single bird 

observation are different during flapping and gliding 
behaviors. (A) Normalized Doppler spectrogram for H-
polarization, (B) H-polarization echo power in [dB], (C) 

correlation coefficient 𝜌ℎ𝑣, and (D) differential reflectivity in 
[dB] 

In order to evaluate parameters for species-
based classification potential, two feature extraction 
stages are used (shown in Figure 2). The first feature 
space contains the time-dependent polarimetric and 
Doppler features described in Sections 3.1-3.2.  As 
shown in Figure 1, these features change in time, and 
may be mapped to the instantaneous behavioral state 
of the bird. Determining the behavioral state of a bird 
at each time step, described in Section 5, yields a 
second feature space that provides a holistic 
description of that bird. These features differ by 
species and include: 

 
(1) Temporal Features – The duration and 

spacing between different behavioral states. 
Related to a bird’s wingbeat frequency and gliding 
intervals, summarizing its time changing 
behavioral patterns. Strong, known, correlation 
with species (Vaughn 1985). 
 
(2) Statistical Features – Description of how a 

bird appears to the radar when it is engaging in 
each behavioral state. 

 
This second feature space enables comparison 

between birds, and will be described in Section 6. 
 



 
Figure 2 – Two feature spaces are used to assess species 

based classification potential. The first feature space 
describes each time step during a single bird observation, 

enabling those times steps to be assigned to a set of 
behavioral states. The second feature space is derived from 

the assigned behavior states, containing temporal and 
statistical information, and is used to compare between 

birds. 

5. STAGE 1: DETERMINING AND 
CHARACTERIZING BEHAVIORAL STATE  
 

In order to determine the behavioral state of a 
bird at each time step, the k-means clustering 
algorithm was used. K-means takes, as arguments, a 
list of observations, each described by a 
measurement vector, and sorts them into 𝑛 most 
closely spaced (Euclidian) clusters of observations. In 
this application, each observation is a time-step 
defined by a feature vector of polarimetric and 
Doppler features measured at that given time. These 
time-step inputs were clustered into 𝑛 = 3 possible 
behavioral states: gliding, flapping 1, and flapping 2. A 

list of features measured at each time includes: 
(1) Reflectivity (𝑍ℎ and 𝑍𝑣) 

(2) Differential Reflectivity (𝑍𝑑𝑟) 

(3) Correlation Coefficient (𝜌ℎ𝑣) 

(4) Differential Phase (𝜓𝑑𝑝) 

(5) Spectral width (𝜎ℎ and 𝜎𝑣) 

(6) Differential spectral width (𝜎ℎ/𝜎𝑣 ) 
(7) Doppler bins from spectrogram (𝑤1through 𝑤𝑄) 

In addition to the measurements listed above, the 
feature vector for each time stamp also included (A) 
the first derivative of each of these measurements as 
well as (B) all six measurements at four adjacent time 
steps (two on each side).  

Before applying the k-means clustering 
algorithm, each feature 𝑥 was smoothed using local 

linear regression to determine local effects of the 
antenna pattern and normalized accordingly: 

 
 𝑥𝑛𝑜𝑟𝑚 = 𝑥 − 𝑥𝑠𝑚𝑜𝑜𝑡ℎ (5) 

 

Features were then rescaled before applying 
weighting (𝑊): 

 
 

𝑥𝑛𝑜𝑟𝑚
′ = 𝑊 ∗ (

𝑥𝑛𝑜𝑟𝑚 − min(𝑥𝑛𝑜𝑟𝑚)

max(𝑥𝑛𝑜𝑟𝑚) − min(𝑥𝑛𝑜𝑟𝑚)
) (6) 

 
Sample behavioral clustering results are shown 

in Figure 3C, for the same bird observation described 
in Figure 1. Figure 3C shows the behavioral state 
assigned to each time-step by the k-means clustering 
algorithm. This particular bird spends extended 
intervals in behavioral state 1 (gliding) and then 
oscillates between behavioral state 2 (flapping 1) and 
behavioral state 3 (flapping 2). 

 

 
Figure 3 – Same bird as Figure 1. (A) H-Polarized 
spectrogram, (B) H-polarized echo power, and (C) 

behavioral state assigned by k-means clustering algorithm. 
Gliding periods are extended periods of time. During flapping 
periods, the bird alternates between flapping 1 and flapping 

2 as it moves its wings.  

Identity was assigned to the k-means output 
clusters according to the following rules: 

 
(1) Cluster 1: Gliding Behavior: if there is a 

behavioral state that remains active for 
extended time intervals, as is the case in 
Figure 3C, then this state is the gliding state. 
If there is no behavioral state with extended 
active intervals, then the state with the highest 
average correlation coefficient is determined 
to be the gliding state. 

(2) Cluster 2: Flapping 1 is the state, of the 

remaining two, with the highest average value 
of spectral width in the vertically polarized 
channel 

(3) Cluster 3: Flapping 2 is the state remaining 

after the first two have been assigned 



 
These rules were selected based upon a 

review of features containing maximum variance 
across the sample as well as several radar 
observations with paired video footage of the 
corresponding bird in flight. Two possible flapping 
states exist in order to capture wingbeat temporal 
information during flapping intervals. 

 

Utility 
Score 

Feature 

1 H-Pol Spectrogram Row at 𝑣̅ − ∆𝑣 

2 H-Pol Total Reflectivity 

3 V-Pol Spectrogram Row at 𝑣̅ − ∆𝑣 

4 Differential Reflectivity 

5 V-Pol Total Reflectivity 

6 Differential Spectrum Width 

7 H-Pol Spectrogram Row at 𝑣̅ − 2∆𝑣 

8 V-Pol Spectrogram Row at 𝑣̅ − 2∆𝑣 

9 V-Pol Spectrogram Row at 𝑣̅ + ∆𝑣 

10 H-Pol Spectrogram Row at 𝑣̅ + ∆𝑣 

11 V-Pol Spectrum Width 

12 H-Pol Spectrogram Row at 𝑣̅ + 3∆𝑣 

13 Correlation Coefficient 

14 H-Pol Spectrogram Row at 𝑣̅ + 4∆𝑣 

15 H-Pol Spectrum Width 

Key: 𝒗̅ is the torso speed, normalized to the 

center of spectrogram. ∆𝒗 denotes the width of 
each Doppler bin in [cm/s].  
“H-Polarization at  𝑣̅ + 𝑛∆𝑣” represents a row of 

the H-polarized spectrogram, offset from the 
center by 𝑛 Doppler bins. 

Table 1 – Summary of features, ranked by their measured 
utility in the behavioral classification process. The most 

useful fifteen features are listed. 

Table 1 contains a list of features, ranked by 
utility in the behavioral classification process. 
Features found to be the least useful are excluded 
from the table. Classification utility was determined 
using principal component analysis, isolating the 
features that contribute most to the directions of 
greatest variance in the data. It should be noted that 
the table contains aggregate results averaged across 
all birds; although the most useful polarimetric and 
Doppler features did differ substantially between bird 
observations. Spectrogram rows close to the center 
Doppler bin 𝑣̅ were universally useful in classifying 

behavioral state across all birds, while features like 
correlation coefficient were extremely useful only in a 
subset of observations. This variation is reflected in 
the rankings in Table 1. Physically speaking, 
spectrogram rows near the center row (𝑣̅) represent 

the return power from components of the bird (i.e. 
wings) that are moving (𝑛 ∙ ∆𝑣) with respect to the 

torso (𝑣̅).  For this reason, their utility in classifying a 

bird’s behavioral state was expected. 
 
6. STAGE 2: COMPARING BETWEEN BIRDS OF 
DIFFERENT SPECIES 
 

Once the behavioral state of a bird has been 
determined at each time, this information is used to 
derive a second set of features. Temporal features 
describe the way that a bird’s behavioral state 
changes in time. Statistical features describe the way 
that a bird looks to the radar during each behavioral 
state, in terms of the polarimetric and Doppler 
measurements. For example; one statistical feature is 
the average value of correlation coefficient 𝜌ℎ𝑣 during 

gliding intervals. As shown in Figure 1, this value may 
be higher than the value of 𝜌ℎ𝑣 during flapping 

intervals. Exactly how much higher is a function of 
species and orientation. 

 
Figure 4 – (A) Bird observations, plotted in terms of their 

average gliding and flapping intervals, fall into clear groups. 
Birds of different species are known to have different 

flapping and gliding intervals (Vaughn 1985). (B) shows the 
method used  to extract gliding and flapping intervals from 

the assigned behavioral state. 

Temporal and statistical features may be used 
to compare between birds of different species. Figure 
4 shows the distributions of (A) time spent gliding and 
(B) time spent flapping. Clear clusters of birds, based 
on temporal behaviors, exist. Work to further 
subdivide within these groups is in progress. 
Continued research focuses on evaluating the full set 
of temporal and statistical features for species based 
classification potential. Collecting an extensive set of 
supervised observations, where the species of the 
bird is known, will be critical in this stage. 
 



7. PRELIMINARY CONCLUSIONS 
  

This paper presents a novel two-stage 
feature extraction method to enable comparison 
between birds of different species in radar echoes. 
The first stage involves determining the behavioral 
state of a bird at each time stamp, across the duration 
of the observation. Our method for extracting wing-
beat temporal information from these assigned 
behavioral states is more localized in time and 
performs better on radar echoes with lower signal-to-
noise ratio, compared to conventional Fourier 
transform based methods.  Spectral information 
extracted from spectrograms and polarimetric 
measurements proved useful. Preliminary clustering 
results show clear groups of bird observations with 
different flapping behavior in time.  
 Future work will focus on improving 
characterization of temporal and statistical features by 
species. This effort will require a more extensive set 
of ground truth data. The ability to ultimately 
distinguish between birds of different species in radar 
returns could transform the wind siting process, 
allowing site selection that favors more vulnerable 
species. 
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