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1. INTRODUCTION
 
 

 
 Localized Aviation MOS Program (LAMP) con-
vection probability and “potential” guidance fore-
casts have been operational in the National 
Weather Service (NWS) since April 2014 
(http://www.nws.noaa.gov/mdl/gfslamp/convection.
php; Charba et al. 2011, hereafter cited as CSS).  
Therein LAMP convection is defined as the occur-
rence of ≥ 40 dBZ radar reflectivity and/or one or 
more cloud-to-ground (CG) lightning flashes over a 
2-h period in a 20-km grid box.  Forecasts are is-
sued every hour for projections in the 1- 25 hour 
range for the contiguous United States (CONUS). 
 
 LAMP convection guidance was developed for 
various applications in the weather enterprise, 
though targeted for aviation operations interests.  
Feedback from various users has indicated signifi-
cant field usage, but some aviation-oriented users 
have indicated a need for higher spatial and tem-
poral resolution.  This is not surprising since fine 
spatial and temporal detail along with acceptable 
forecast skill is important, especially for inflight op-
erations and various aviation operations at airports.  
So, a primary goal of this study is to increase the 
spatial and temporal resolution of the LAMP con-
vection guidance.  Note that as resolution in fore-
casts increases, skill generally decreases since the 
targeted event becomes “smaller” and thus more 
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difficult to accurately forecast.  Thus, an equally 
important goal is that forecast skill for the new “hi-
res” product should be at least comparable to that 
for the current product.  This article focuses on 
how new datasets and new techniques are applied 
for achieving increased resolution and skill in the 
new, experimental LAMP convection product 
 
2. UPGRADED CONVECTION PREDICTAND 
 
2.1 Attributes of the Upgraded Predictand 
 
 The convection predictand was upgraded in 
several ways. (1) The temporal resolution was 
doubled, as the valid period was reduced from two 
hours to one hour.  (2) The spatial resolution was 
also doubled, as the base grid mesh was reduced 
from 20 km to 10 km.  At the same time, the valid 
area (a 20-km square) of the convection event re-
mained unchanged.  While this results in 10-km 
overlap of neighboring predictand grid boxes, the 
overlap does not adversely impact the convection 
definition

1
.  (3) The lightning dataset, which com-

prises one of two databases used jointly to specify 
the convection predictand, was upgraded from CG 
flashes to total lightning (TL) flashes [consisting of 
both CG and in-cloud (IC) flashes].  The new TL 
data are from the Earth Networks Total Lightning 
Network, which was recently developed and im-
plemented by Earth Networks, Inc.  (4) The radar 
reflectivity database, which is used together with 
the TL database in the predictand specification, 

                                                      
1
The rationale for maintaining the 20-km valid area 

is to avoid an undesirable reduction in convection 
occurrence relative frequency that inherently ac-
companies the 50% valid period reduction.  

http://www.nws.noaa.gov/mdl/gfslamp/convection.php
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was upgraded from obsolete, coarse-resolution 
RCM (Radar Coded Messages) reflectivity data 
(OFCM 1991; Kitzmiller et al. 2002) to high resolu-
tion radar reflectivity data from the Multi-Radar 
Multi-Sensor System (MRMS; http://nmq.ou.edu/, 
Zhang, et al. 2011; 2015), which became opera-
tional in the NWS in October 2014. 
 
 Note that radar reflectivity data have a greater 
role in specifying convection occurrences than 

lightning flashes, as reflectivity of  40 dBZ (a 
proxy for convection occurrence) generally occurs 
more often than lightning flashes.  Unfortunately, 
reflectivity data are notorious for being contaminat-
ed with various types of random and systematic 
error.  In automated applications of radar data, 
these errors may be ultimately transferred to the 
product of the application.  Thus, the quality of the 
MRMS data was carefully examined prior to its 
application here. 
 
2.2  Quality Control (QC) of MRMS Reflectivity 

Grids:  Needs/Benefits 
 
 Underlying our decision to examine the quality 
of the MRMS data is the foundational role these 
data have in this work.  Also, in the lead author’s 
previous experience with automated radar data 
applications, the data quality was found to have 
deficiencies which warranted the development and 
application of supplemental quality control proce-
dures (Charba and Liang 2005).  While the quality 
assurance procedures built into the MRMS dataset 
may be more comprehensive than for radar data 
used previously, perusal of fine grid composite re-
flectivity maps based on the MRMS archive used in 
this study revealed the presence of quality flaws 
similar to those encountered in the past. 
 
 The analysis of MRMS data quality began by 
first gridding the data, which consists of tabulating 
the maximum instantaneous composite reflectivity 
(1-km MRMS grid resolution) within 5-km square 
grid boxes on a Lambert Conformal Conic grid

2
.  

These 5-km grids were produced at 15-min inter-
vals for the period spanning January 2012 to 
March 2015. 
 
 With this grid archive, maps of seasonal rela-
tive frequency for various thresholds of reflectivity 
were developed.  Figure 1a shows such a radar 
echo climatology map for the ≥ 40 dBZ composite 
reflectivity threshold based on all hh:00 times (hh = 

                                                      
2
5-km grid boxes yielded better data error diagno-

ses than smaller or larger boxes  

00, 01,…, 23 UTC) for warm season months   
(April - September) of 2012 - 2014.  The map 
shows expected relative frequency (RF) “flower 
patterns” around individual radar sites, which re-
sults from the inherent radar-range dependency of 
precipitation echo detection.  The map also shows 
areas of unrealistically low RFs (in gray color) 
mostly across the western U.S., which result from 
radar beam blockage and “precipitation over-
shooting” in this mountainous region.  Such anom-
alously low RFs also appear in locations of ex-
tended radar range not only along the perimeter of 
the network but even in interior locations of widely-
spaced radar sites.  From past experience with 
similar echo climatology maps (Charba and Liang 
2005), these low RF anomalies were expected. 
 
 What we did not expect are large areas of spu-
riously high RFs (magenta areas in Fig. 1a), which 
appear throughout southern Canada and into 
Washington.  Examination of individual grids re-
vealed these high RF anomalies arise from the 
frequent presence of anomalous propagation (AP) 
echoes.  We also did not expect to find small 
“spikes” of spurious RF maxima, which can be 
seen in the magnified rectangular area of the cen-
tral U.S.  In individual 5-km maximum reflectivity 
grids these RF spikes coincide with stationary 
“spike echoes,” which likely result from radar de-
tection of wind farms. 
 
 These types of systematic reflectivity errors 
together with random, occasionally-occurring false 
echoes (noted earlier) motivated us to pursue the 
unenviable, arduous task of developing automated 
processes to detect and remove such error from 
the 5-km maximum composite reflectivity grids.  
This effort is referred to as the Meteorological De-
velopment Laboratory (MDL) automated supple-
mental quality control (QC) of MRMS data. 
 
 The MDL QC processes consist of two basic 
components.  The first process, which consists of 
detection and screening of suspected false echoes 
in individual grids, is called dynamic QC.  It is 
comprised of an extensive series of computer-code 
consistency checks between the 5-km maximum 
composite reflectivity grids and corresponding 
grids based on other MRMS reflectivity product 
parameters, TL flashes, and fine scale and large 
scale numerical model output.  A subsequent pro-
cess, which consists of automated “grid masking” 
for a pre-determined set of grid points, is called 
static QC.  While even a cursory description of the 
dynamic and static QC processes is beyond the 
scope of this article (a separate article devoted to 

http://nmq.ou.edu/


 3 

this topic is pending), the benefits resulting from its 
application (briefly discussed below) seem to justify 
its development. 
 
 In particular, comparing the after-QC echo cli-
matology map (Fig. 1b) with the before-QC coun-
terpart (Fig. 1a) we find complete removal of the 
spuriously high RFs across the northern portion of 
the map and strong mitigation of spike RFs in the 
central U.S.  These QC benefits resulted from 
throw-out of suspected AP echoes by the dynamic 
QC process.  Also, close comparison of the before- 
and after-QC RFs (Figs. 1a and 1b) reveals a very 
slight reduction in RF magnitude over the entire 
radar coverage domain, which results from throw-
out of randomly-occurring suspected false echoes.  
Careful inspection of individual grids with echo 
throw-outs reveals (a) most tossed echoes are ob-
viously false, (b) a small fraction of truly-false ech-
oes were not thrown out, and (c) and a much 
smaller fraction of tossed echoes were actually 
valid echoes (not shown).  Note that the reduction 
in magnitude of the RFs all across the map in 
Fig. 1b is quite small, which suggests the fraction 
of tossed valid echoes is probably negligible. 
 
 Of course, the value of the MDL QC ultimately 
resides in whether it yields improved LAMP con-
vection forecasts, i.e., the MRMS data application 
at hand.  This question is briefly addressed in sec-
tion 5.4 of this article. 
 
2.3 Specification of Upgraded Predictand 
 
 Following application of the MDL supplemental 
QC to the 5-km maximum composite reflectivity 
grids, these grids (along with corresponding TL 
flash count grids) were used to specify the upgrad-
ed convection predictand.  The first step consists 
of tabulating the maximum reflectivity for each      
5-km grid box across the four 15-min times falling 
within the 1-h valid period.  The corresponding TL 
component is obtained by tabulating the TL flash 
count within the same 5-km grid boxes for the 1-h 
period.  Then, the maximum reflectivity or TL flash 
count is obtained for 20-km grid boxes by scanning 
over 4x4 5-km reflectivity or flash count sub-grids.  
Note that these tabulation processes are per-
formed at alternate 5-km grid points to obtain     
20-km grid box values centered on grid points 
spaced 10 km apart.  Thus, 20-km grid boxes for 
adjacent 10-km grid points overlap by 10 km. 
 
 The second step of the convection predictand 
specification involves combining the reflectivity and 
TL components.  Thus, the predictand for a 20-km 

grid box is specified as a convection occurrence 
(1 value) if either (or both) the reflectivity is 
≥ 40 dBZ or the TL flash count is greater than zero; 
otherwise the convection predictand is specified as 
a non-occurrence (0 value).  Note that this pre-
dictand specification is not impacted by the 10-km 
overlap of the neighboring predictand grid boxes. 
 
3. UPGRADED CONVECTION PREDICTORS 
 
3.1 Upgraded Predictor Databases 
 
 The upgraded convection predictor databases 
consist of three types.  (1) Fine scale observational 
data (OBS), which consist of 5-km grids of the 
most recent QC’d MRMS reflectivity and TL flash 
count parameters (the same gridded databases 
used for the convection predictand specification 
discussed in section 2).  (2) Fine scale model out-
put from the HRRR (High Resolution Rapid Re-
fresh model; Smith et al. 2008; Benjamin et al. 
2016), which became operational in the 
NWS in September 2014 (http://rapidrefresh.noaa.
gov/hrrr/; http://ruc.noaa.gov/pdf/RAPHRRR_WCO
SS_2016Q1_Final-sb-12oct2015.pdf).  (3) Large 
scale model forecasts comprised of GFS- (Global 
Forecast System; Kanamitsu et al., 1991) and 
NAM- (North American Mesoscale Model; Rodg-
ers, et al., 2005) based Model Output Statistics 
(MOS) 1-h convection probabilities.  Note that the 
MOS convection predictand and associated 10-km 
forecast grid are the same as for LAMP. 
 
3.2 Specifying OBS and HRRR Predictor Grids 
 
 The specification of OBS and HRRR predictor 
variables on the LAMP 10-km forecast grid is com-
prised of a two-step process.  The first step in-
volves use of 5-km base (working) grids of the type 
noted above.  In the case of the TL data, these 
working grids contain either 30- or 60-min TL flash 
counts for the 5-km grid boxes.  Then, to specify a 
given TL flash count predictor variable on the     
10-km grid (section 3.4), these flash counts are 
summed over 2x2 sub-grids of 5-km grid boxes to 
obtain counts for 10-km grid boxes. 
 
 The 5-km working grids used for deriving 
MRMS predictors on the 10-km grid (section 3.4) 
are the output grids from the MDL supplemental 
QC of the MRMS data.  Recall from section 2.2, 
the maximum pixel value of an MRMS reflectivity 
product variable was tabulated for the 5-km grid 
box to fully capture indications of convection occur-
rences by CONUS network radars.  The corre-
sponding 5-km grid box tabulation procedure for 

http://rapidrefresh.noaa.gov/hrrr/
http://rapidrefresh.noaa.gov/hrrr/
http://ruc.noaa.gov/pdf/RAPHRRR_WCOSS_2016Q1_Final-sb-12oct2015.pdf
http://ruc.noaa.gov/pdf/RAPHRRR_WCOSS_2016Q1_Final-sb-12oct2015.pdf
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HRRR variables is identical, except the mean (ra-
ther than the maximum) over all native 3-km HRRR 
grid point values is tabulated.  [The averaging (i.e., 
smoothing) is done to mitigate possible random 
error in the HRRR forecasts.]  Finally, for each of 
the MRMS and HRRR predictor variables, the val-
ue tabulated for the 10-km grid box is the maxi-
mum value over the 2x2 sub-grid of 5-km grid box 
values.  Thus, the MRMS value is the actual max-
imum native grid point value within the 10-km grid 
box, whereas the corresponding HRRR value is an 
area-averaged maximum. 
 
 Note that the use of the 5-km working grids for 
specification of the TL predictor variables was mo-
tivated by programming convenience (these 10-km 
predictor grids could have been specified without 
use of the 5-km working grids), whereas for MRMS 
variables the MDL supplemental QC procedure 
dictated use of the working grids.  For the HRRR 
variables, on the other hand, the use of the 5-km 
grids provided a convenient mechanism for (slight) 
areal smoothing of the fine scale HRRR grids.  Fi-
nally, note that use of all TL observations and all 
native MRMS and HRRR grid point values in the 
LAMP predictor specification may optimize predic-
tor usage of these fine scale datasets. 
 
3.3 Advection of OBS Variables 
 
 The OBS candidate predictor variables consist 
of various radar reflectivity product and TL flash 
count parameters (see following sub-section) 
based on the most recent observations.  In addi-
tion to these “persisted-observations” predictors, 
simple advection is applied to the OBS grids using 
GFS lower tropospheric wind forecasts as the ad-
vecting wind.  The advection program used herein 
is identical to that described in (Glahn and Unger 
1986, pp. 1319-20), with one exception.  Since the 
program operates on a 10-km Polar Stereographic 
grid, it is necessary to interpolate the OBS varia-
bles from the LAMP 10-km Lambert grid to the Po-
lar Stereographic grid prior to the advection, and 
then perform the reverse interpolation afterwards.  
Visual comparison of non-interpolated and interpo-
lated advected grid maps suggested the very slight 
impact of the interpolation should have a negligible 
effect on the quality of the advected predictors. 
 
3.4 Candidate OBS, HRRR, and MOS Convec-

tion Predictors 
 
 A complete list of candidate OBS, HRRR, and 
MOS convection predictor variables is shown in 
Table 1.  Several comments are noteworthy.       

(1) The OBS variables consist of “initial” and “ad-
vected” types, where “initial” denotes persistence 
of the most recent observation and “advected” re-
fers to the application of the advection process 
noted above to “synchronize the observation” with 
the ending time of the 1-h predictand valid period.     
(2) All of the HRRR variables in Table 1 are ob-
tained directly from an “experimental archive”

3
 pro-

vided by NOAA/Earth System Research 
Laboratory/Global Systems Division, except mois-
ture divergence which is computed from HRRR  
10-m wind and 2-m specific humidity.  (3) While the 
HRRR model (as for LAMP) runs on an hourly cy-
cle, the HRRR ingest into a given LAMP cycle is 
from the 1-h old HRRR cycle, which is necessary 
(for real time application) to account for an          
80-85 min latency of HRRR model output.  Also, 
because the longest forecast projection from the 
operational HRRR model is just 15 hours, we use 
“persisted” 15-h HRRR forecasts for LAMP projec-
tions in the 15-25 h range.  While the predictive 
value of these persisted HRRR forecasts is obvi-
ously limited, especially for the upper end of this 
LAMP projection range, their use was judged to be 
a better option than the alternative of no HRRR 
predictor input.  (4) Light grid smoothing was ap-
plied for all variables in the table, the degree of 
which is specific to each variable. 
 
4. DEVELOPMENT OF UPGRADED CONVEC-
TION REGRESSION EQUATIONS 
 
4.1  New Aspects of Regression Equation De-

velopment 
 
 As in CSS, the 1-h LAMP convection probabili-
ties are produced by multiple linear regression 
equations based on the new 1-h convection pre-
dictand discussed in section 2 and candidate pre-
dictors in Table 1.  The historical sample, most of 
which was used for the equation development and 
the remainder for testing, spans 01 January 2012 
to 30 September 2015.  Note that separate regres-
sion equations, each with a unique set of predic-
tors, are developed for each hourly LAMP cycle, 
each of three LAMP seasons, and each of seven 
geographical regions over the CONUS.  The LAMP 
seasons are “spring” which applies to March 16 to 
June 30, “summer” to July 01 to October 15, and 
“cool” to October 16 to March 15.  The seven re-
gions are shown in Fig. 2, which is a reduction 

                                                      
3
 The “experimental archive” is based on the most 

current experimental version of the HRRR model 
for each date-time contained in the archive 
(http://rapidrefresh.noaa.gov/hrrr/). 

http://rapidrefresh.noaa.gov/hrrr/
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from 13 used in CSS.  The fewer (larger) regions 
used here offsets the sample size reduction result-
ing from the shorter development sample.  Note 
that the regions have slight overlap, which is nec-
essary to avoid regional discontinuities in the con-
vection probabilities (Charba and Samplatsky 
2011). 
 
4.2 Ranking of Convection Predictors 
 
 The regression equations are developed such 
that a fixed set of predictors is used across the 
entire 1-25 h LAMP forecast range, which enhanc-
es consistency in the probabilities therein.  Prelimi-
nary (forecast skill) testing of equations with 
varying numbers of predictors revealed that 20 is 
an optimum number. 
 
 It is useful to examine the ranking (i.e., the or-
der of selection in the screening regression pro-
cess) of predictors in the regression equations, as 
a predictor’s rank is directly related to its nominal 
contribution to the forecast probability.  The objec-
tive ranking scheme involves assigning a rank 
number to a predictor to reflect its order of selec-
tion.  Since the equations contain 20 predictors, 
the assigned rank number is 20 (1) where a predic-
tor was selected first (last) and accordingly for pre-
dictors selected between these bounds.  Recall 
that while a given LAMP cycle and season involves 
seven regional equations (sets of predictors), for 
brevity the predictor ranking is discussed where 
the individual predictor rankings are summed over 
the seven equations for a combined-region rank-
ing.  Also, the discussion is mostly limited to rela-
tive ranking trends of the three basic predictor 
types (OBS, HRRR, and MOS in Table 1) across 
the three LAMP seasons and four LAMP cycles 
(00, 06, 12, and 18 UTC) developed to date. 
 
 A major predictor trend is that the OBS varia-
bles (both initial and advected) generally have top 
ranking across the four LAMP cycles.  Note the 
contribution of the OBS variables to the probabili-
ties is mainly in the 1-to-4 hour LAMP forecast pro-
jection range (supporting evidence is provided in 
the following section).  Also, within the OBS group 
the MRMS variables generally have higher ranking 
than the TL variables, where the main exception is 
for the 00 UTC cycle during spring and summer 
where a TL predictor has top ranking.  The latter 
finding is consistent with the relatively high light-
ning frequency at this time of the day during the 
warm season of the year.  The typically-higher 
ranking of MRMS predictors is consistent with 
generally higher frequency of ≥ 40 dBZ radar ech-

oes than lightning flashes.  Note that for the LAMP 
cool season, when the nation-wide seasonal light-
ning frequency is at a minimum, we find the CO-
NUS ranking of the TL predictors is especially low. 
 
 Another major trend is that the HRRR and 
MOS predictors have roughly equal ranking across 
all three seasons and four cycles.  Further, we find 
a clear trend that both types of model forecasts 
have a higher ranking during summer than during 
the cool or spring seasons.  Conversely, the weak 
relative ranking of OBS predictors during summer 
is consistent with the predominance of relatively 
short space and time scales of convective systems 
during that time of the year, i.e., short space-time 
scales likely weaken the predictive value of per-
sisted and advected observations. 
 
 Note also that while the (fine-scale) HRRR and 
(large-scale) MOS predictors have generally simi-
lar overall ranking they each have opposite effects 
on spatial detail in individual probability maps.  
Specifically, the HRRR predictors infuse fine detail 
in the probability fields, while the MOS variables 
control the large scale variability.  Still, fine detail 
contributed by the HRRR predictors is mostly lim-
ited to 4-16 h LAMP forecast projections.  For 
shorter LAMP projections, detail and skill in the 
LAMP probabilities is provided mainly by OBS pre-
dictors.  For LAMP projections of 16 hours and 
higher, the weak contribution of the HRRR predic-
tors is undoubtedly due to the limited predictive 
value of the persisted 15-h HRRR forecasts in this 
range (see section 3.4).  Thus, for long LAMP pro-
jections, where the predictive contribution of the 
OBS variables is likely negligible and the HRRR 
contribution is small, the convection probabilities 
are almost entirely controlled by the large scale 
MOS variables.  (Each of these predictor impact 
assertions is supported by findings from forecast 
performance assessments, which are discussed in 
the following section.) 
 
5. FORECAST PERFORMANCE OF THE UP-
GRADED CONVECTION PROBABILITIES 
 
 In this section, the performance of the new 1-h 
convection probabilities is examined from several 
perspectives.  In section 5.1 regional variations in 
the performance are explored to provide insights 
into the quality of the convection predictand and 
predictors for different geographical locations.  In 
section 5.2 the CONUS-wide quantitative skill for 
the new LAMP 1-h probabilities is compared 
against the corresponding skill for 1-h MOS and 
the LAMP operational 2-h probabilities.  Lastly, in 
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section 5.3, the forecast performances of the 2-h 
and 1-h probabilities are compared subjectively via 
a case study to address forecast performance from 
a field user perspective.  The quantitative skill 
measure used is the Brier Skill Score (BSS), which 
is defined as the percentage improvement in ½ the 
Brier Score (Brier 1950) for the convection proba-
bilities over the corresponding score for convection 
relative frequency (Wilks 2006, pp 284-285). 
 
5.1 Geographical Variations in Probability Per-
formance 
 
 Figure 3 shows the seasonal BSS versus 
LAMP projection for geographical regions shown in 
Fig. 2.  The developmental sample is used here, as 
this sample is sufficiently long to provide robust 
regional scores.  Note that these BSS’s are not 
true skill measures as they are based on depend-
ent samples. 
 
 In Fig. 3 we see substantial regional diversity 
in BSS over the three seasons: the diversity is 
quite strong for the cool season, moderate for 
spring, and weak for summer.  Note that the BSS’s 
for the two western regions (Pacific Coast and 
Rocky Mountain regions) are rather low for both 
the cool and spring seasons.  To a large degree 
this may be a reflection of the poor quality of the 
MRMS data in this geographical area.  Note that 
the quality of the convection predictand and OBS 
predictors in this area are largely dependent on 
quality of the radar reflectivity data, as lightning 
flashes (where the quality of the underlying data-
base is higher) are relatively rare in this area dur-
ing the LAMP cool and spring seasons. 
 
 Contrastingly, the BSS’s are relatively high for 
the Central Plains region throughout the year and 
for the Southeast region (Fig. 3) during the cool 
season, which suggests a BSS linkage to the pre-
dominant convection spatial scales.  That is, con-
vection tends to occur on relatively large scales in 
the central U.S. throughout the year, whereas in 
the southeastern U.S. that is true mainly during 
cool season.  Lastly, the relatively low BSS’s for 
most regions during the summer are consistent 
with the predominance of smaller convection spa-
tial scales during this season compared to other 
seasons.  Note that an awareness of these region-
al and seasonal convection probability perfor-
mance trends should be especially beneficial to 
field users of these guidance probabilities. 
 
 
 

5.2 Conus-Wide Probability Skill 
 
 The skill of the convection probabilities was 
examined for the 18 UTC LAMP cycle, where the 
most recent 30 days of each seasonal sample was 
withheld from the regression equation develop-
ment.  The BSS for these seasonal samples is 
plotted as a function of LAMP forecast projection in 
Figs. 4a - 4c.  The skill curves for the 1-h LAMP 
convection probabilities feature quite high skill for 
the 1-h forecast projection for all three seasons

4
.  

Following this initial skill maximum, the BSS’s ex-
hibit a steep fall to about 4 hours, they level off 
from that point out to roughly 16 hours, and there-
after they show a gradual fall-off.  Note that BSS 
curves for the corresponding developmental sam-
ples are quite similar to these, as are correspond-
ing curves for the 00, 06, and 12 UTC cycles (not 
shown). 
 
 The characteristic shape of the LAMP BSS 
curves in Fig. 4 is controlled by the diverse relative 
importance of the OBS, HRRR, and MOS predic-
tors across the LAMP forecast projections.  Specif-
ically, the very high skill at the 1-h projection 
reflects the high predictive effectiveness of the ini-
tial and advected OBS variables.  Thereafter, the 
sharp skill drop to 4 hours results from the rapid 
loss in predictive value of these predictors com-
bined with a minimal contribution from HRRR pre-
dictors.  Contrastingly, the contribution of HRRR 
predictors is evidently substantial in the 4-16 h 
forecast range, as indicated by the strong im-
provement in BSS’s of the 1-h probabilities over 
BSS’s for the 2-h probabilities in this forecast 
range.  (Note that HRRR predictors are not used 
for the 2-h probabilities; also see a qualification for 
this skill comparison below.)  Lastly, the slow skill 
fall-off with projection beyond 16 hours likely re-
flects the weak predictive value of persisted 15-h 
HRRR forecasts and thus a near-total skill reliance 
on MOS predictors. 
 
 Included in Figs. 4a – 4c are corresponding 
BSS curves for the GFS-based and NAM-based 
MOS 1-h convection probabilities as well as the 
corresponding BSS curves for LAMP operational  
2-h convection probabilities.  However, a quantita-

                                                      
4
Note that while the MRMS and TL data cutoff time 

for this LAMP cycle is 1800 UTC, the LAMP con-
vection probabilities are not available until after 
1830 UTC, which makes these probabilities largely 
a nowcast.  The delay in availability of the probabil-
ities is due to latency of HRRR predictors from the 
1700 UTC HRRR cycle (see section 3.4). 
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tive skill comparison of the 1-h LAMP probabilities 
against the 1-h MOS probabilities is not valid be-
cause the verification sample at hand was included 
in the sample used for development of the MOS 
regression equations and thus the MOS samples 
are not “independent.”  A quantitative skill compar-
ison with the 2-h LAMP probabilities is also not 
valid because the 1-h and 2-h convection pre-
dictands are substantially different from one an-
other (see section 2.3).  Nevertheless, a qualitative 
comparison of scores of the 1-h and 2-h convec-
tion probabilities is both valid and useful. 
 
 In Figs. 4a – 4c we see that BSS’s for the 1-h 
probabilities are higher than those for the 2-h 
probabilities for all projections to at least 18 hours.  
Afterward the relative scores for the two probability 
products are mixed across the three seasons.  
Note that the improvement in the 1-h probability 
scores is substantial in the 4-16 hour range, re-
flecting the strong contribution of HRRR predictors 
there. 
 
 The 1-h LAMP versus 1-h MOS BSS compari-
son (Figs. 4a – 4c) shows a clear improvement of 
LAMP over MOS for all projections.  Note that the 
improvement is especially strong for the shortest 
LAMP projections, which is expected because of 
the strong contribution of the OBS predictors, as 
noted above.  What might not be expected is the 
small though clear improvement of LAMP on MOS 
for the longest forecast projections, where the con-
tributions of the OBS and HRRR predictors is evi-
dently negligible.  This LAMP improvement is likely 
due to the summation of several individual benefits 
that result from predictor usage of the GFS-based 
and NAM-based MOS convection probabilities in 
the corresponding LAMP regression equations.  
One benefit is that the predictive skill of these two 
MOS predictors is combined in the LAMP regres-
sion equations, whereas the MOS BSS’s in Fig. 4 
apply to each MOS predictor individually.  Further, 
these MOS predictors are used to derive supple-
mentary MOS product predictors (see Table 1), 
which may result in additional LAMP convection 
probability skill.  Each of these asserted LAMP skill 
benefits was demonstrated in conjunction with the 
2-h operational LAMP convection probabilities in 
CSS. 
 
 Another skill benefit that may result from the 
incorporation of the MOS predictors in the LAMP 
equations is due to he “LAMP regional calibration 
of non-regionalized MOS convection probabilities.”  
That is, the MOS regression equations were de-
veloped with the generalized operator approach 

(Glahn and Lowry 1972), wherein a single equation 
applies to all points in the CONUS domain.  Then, 
as the MOS probabilities are incorporated as pre-
dictors in the regionalized LAMP equations, the 
MOS probabilities may effectively undergo regional 
calibration.  The skill benefit that may result from 
such regional calibration was demonstrated for the 
2-h operational probabilities in CSS. 
 
 Finally, note the true skill advantage of LAMP 
over MOS is expected to be larger than indicated 
in Figs. 4a – 4c, as the MOS BSS’s are based on 
dependent samples while the LAMP samples are 
independent.  Thus, a better indication of the true 
LAMP skill advantage is where both MOS and 
LAMP scores are based on the same dependent 
sample, as provided in Fig. 4d.  Note that the 
LAMP BSS advantage here is larger than that 
shown in Figs. 4a – 4c.  Also, similar results were 
obtained for other seasons for this LAMP cycle and 
for the three other LAMP cycles developed to date.  
Thus, the LAMP skill improvement on MOS ap-
pears substantial at all projections. 
 
5.3 Case Study 
 
 From a field user perspective, the forecast per-
formance improvement of the 1-h convection prob-
abilities over the operational 2-h probabilities may 
be best judged by examining individual probability 
maps side-by-side.  An example of such a compar-
ison is shown in Fig. 5 for the selected case of 
18 UTC 23 December 2015, where the 2-h proba-
bilities are shown in the left panel and the 1-h 
probabilities to the right.  The verifying map used 
here for both forecasts is the MRMS instantane-
ous composite reflectivity (from http://nmq.ou.edu/a
pplications/qvs_2d_maps_main.html) valid near 
the temporal center of each predictand.  Note that 
while the true verification map for each probability 
product (not shown) is substantially different than 
this surrogate, composite reflectivity is a principal 
constituent of each predictand and also this surro-
gate does not favor either forecast. 
 
 In Fig. 5 the 2-h and 1-h probability maps are 
compared for three LAMP forecast projections (the 
projection applies to the end of the valid period for 
each predictand).  Note that the 1-h probability 
map for the 3-h (short range) projection (Fig. 5a, 
right panel) shows finer spatial detail than for the 
corresponding 2-h probability map (left panel) over 
the entire eastern U.S.  At the same time peak 
probabilities are similar between the two maps de-
spite the shorter valid period for the 1-h probabili-
ties.  Also, probabilities in the 50-100% range for 

http://nmq.ou.edu/applications/qvs_2d_maps_main.html
http://nmq.ou.edu/applications/qvs_2d_maps_main.html
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the 1-h map show better spatial focus and position-
ing for the intense convection line that extends 
from eastern Arkansas to southern Illinois.  These 
1-h probability improvements reflect upgrades to 
the radar and lightning predictors discussed in sec-
tion 3. 
 
 For the corresponding 12-h (medium range) 
projection (Fig. 5b) the improved spatial focus for 
the 1-h probabilities is quite strong, especially for 
two intense echo lines labeled A and B in the veri-
fying map.  Also, the 1-h forecast map shows 
probabilities peaking near 40% over southern 
Lake Superior which coincides (in the verifying 
map) with reflectivites above the 40 dBZ convec-
tion occurrence threshold; contrastingly the corre-
sponding 2-h map shows quite low (< 5%) 
probabilities there.  Note further the 1-h probability 
pattern generally resembles the verifying MRMS 
map to a far better degree than for the 2-h proba-
bilities.  These findings evidently reflect the power 
of HRRR predictors in the 1-h probability regres-
sion equations. 
 
 For the 24-h (long range) projection (Fig. 5c), 
the 1-h and 2-h probability maps show a much 
closer resemblance to one another.  This similarity 
arises as the 1-h probability map exhibits a loss in 
spatial detail, which is present for the 3- and 12-h 
projections.  This loss in spatial resolution along 
with the substantial loss in probability skill evident 
in Figs. 4a – 4c reflects the marginal value of the 
persisted HRRR 15-h forecasts for this extended 
LAMP projection.  This finding points a critical need 
for a forecast range extension of operational 
HRRR forecasts beyond the present cutoff of 
15 hours. 
 
5.4 Contribution of MDL MRMS QC to Convec-
tion Probability 
 
 In section 2.2 we broached the question 
whether the MDL supplemental QC of MRMS re-
flectivity data results in improved LAMP convection 
forecasts.  Here, we very briefly address this ques-
tion.  This was done whereby we derived separate 
“before-QC” 1-h convection probability regression 
equations, where the only difference from the “af-
ter-QC” regression equations used in this study 
was that the MDL supplemental QC was not ap-
plied to the 5-km MRMS reflectivity product grids 
prior to specification of the convection predictand 
and MRMS candidate predictors. 
 
 In Fig. 6 before-QC and after-QC 1-h convec-
tion probabilities for a 1-h LAMP forecast projection 

are shown for a selected case in which (suspected) 
AP echoes were present in the base 5-km MRMS 
maximum reflectivity grid at the LAMP model initial 
(cycle) time (lower-left panel).  These AP echoes, 
which appear within the oval area shown, are re-
flected in the “before-QC” 1-h convection forecast 
as small, widely scattered “probability spots,” with 
peak probabilities near 50%.  In this case the dy-
namic QC process (section 2.2) detected the AP 
echoes with reflectivities ≥ 35 dBZ and masked 
them out.  This false echo removal is reflected in 
the after-QC forecast map as a near-complete 
elimination of the contaminated convection proba-
bilities, while probabilities in neighboring areas are 
undisturbed.  Thus, the QC resulted in small, 
meaningful improvement in the convection proba-
bilities in this case. 
 
 Additionally, seasonal CONUS BSS’s for the 
before-QC and after-QC 1-h convection probabili-
ties were computed over the full developmental 
sample (01 January 2012 – 30 September 2015) 
for each of the three LAMP seasons and four 
LAMP cycles (00, 06, 12, and 18 UTC) addressed 
in this study.  The upgraded 1-h convection pre-
dictand, which uses the QC’d MRMS maximum 
composite reflectivity grids discussed in section 2.2 
was used as verifying data for both sets of fore-
casts.  Preliminary BSS results obtained to date 
are presently being assessed and will be reported 
in a future paper. 
 
6. CONVECTION POTENTIAL 
 
 In the previous section, we showed that skill of 
the convection probabilities varies strongly with 
forecast projection and geographical region.  What 
we did not show (for brevity) is that the sharpness 
(i.e., range) of the probabilities exhibits similarly 
strong variations.  The strong sharpness variability 
together with a common lack of understanding of 
forecasts expressed in probability form makes us-
ing the convection probabilities guidance rather 
challenging. 
 
 The conventional “remedy” to the problem is to 
convert the probabilities to categorical yes/no oc-
currence forecasts by applying a pre-determined 
threshold probability.  At MDL, the threshold is 
specified objectively with an iterative scheme 
where the threat score (TS; same as Critical Suc-
cess Index; Schaefer 1990) is maximized with bias 
restricted to a narrow range.  For the operational 
LAMP 2-h convection probabilities, CSS extended 
the technique to produce four convection 
risk/threat categories (no, low, medium, and high) 
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instead of just the usual two “yes/no” categories.  
The four category product is called convection po-
tential.  The following sub-section expands on how 
convection potential is derived, and the subse-
quent sub-section discusses its performance. 
 
6.1 Deriving and Interpreting Convection Po-
tential 
 
 Principal features of convection potential are 
summarized in Table 2.  Note that the three con-
vection potential categories (low, medium, and 
high) are based on three pre-determined threshold 
probabilities, where the threshold probability value 
is relatively small for low potential, it is higher for 
medium potential, and it is highest for high poten-
tial.  Also the prescribed high bias for low and 
above potential (“low potential threshold”; bias in 
the 2.70 – 2.83 range, where unbiased forecasts 
have a 1.0 value) implies strong convection over-
forecasting.  Just slight over-forecasting (1.03 – 
1.13 bias range) is associated with the medium 
potential threshold, and strong under-forecasting 
(0.38 – 0.43 bias range) is associated with high 
potential. 
 
 A key feature of convection potential is that 
each of the three threshold probabilities (which are 
derived from the same sample as used for devel-
opment of the regression equations) is derived 
separately for each LAMP cycle, forecast projec-
tion, season, and geographical region.  Thus, the 
threshold probability associated with a given po-
tential category varies with the LAMP model cycle, 
projection, etc.  Also, since the bias associated 
with a given potential threshold is restricted to a 
narrow range, this threshold potential will exhibit 
about the same bias regardless of the LAMP cycle, 
projection, etc.  For example, the bias associated 
with the medium potential threshold will be in the 
1.03 – 1.13 range regardless of the LAMP model 
cycle, forecast projection, season, and geograph-
ical location.  The recognition of this attribute of 
convection potential should benefit users of both 
the potential and the probabilities. 
 
6.2 Example Convection Potential Forecast 
Maps 
 
 Example maps of 1-h (and 2-h) convection 
potential are shown in Fig. 7.  The most obvious 
property seen here is the progressively decreasing 
areal coverage from the low potential threshold, to 
the medium potential threshold, and to high poten-
tial.  This property is a reflection of the decreasing 

bias across the three potential thresholds dis-
cussed above. 
 
 Comparing the 1-h and 2-h convection poten-
tial maps (Fig. 7), we see general similarity be-
tween them, which is expected since potential is 
specified identically across the two predictands.  
On the other hand, greater spatial detail is present 
in the 1-h potential, which is a reflection of the in-
creased spatial detail in the underlying convection 
probabilities (Fig. 5).  In fact, this increased detail 
results in instances of a small map feature in the  
1-h convection potential which is entirely absent in 
the corresponding 2-h potential map.  Examples of 
this appear over Lake Superior at the 12-h projec-
tion and around Cape Cod at the 24-h projection. 
 
 Close cross-comparison of the 1-h probability 
and 1-h potential maps in Figs. 5 and 7, respec-
tively, shows how the probabilities associated with 
a potential category vary across different map loca-
tions and forecast projections.  For example, medi-
um potential over Iowa at the 3-h projection is 
associated with probabilities in the 35-45% range, 
whereas medium potential over the southern Appa-
lachian Mountains at the 24-h projection is associ-
ated with probabilities in the 20-30% range.  
Similarly, high potential over Iowa at the 3-h pro-
jection is associated with probabilities near 50%, 
whereas high potential around the Alabama Coast 
at the 24-h projection is associated with probabili-
ties as low as about 40%. 
 
6.3 Convection Potential Scores 
 
 TS and bias associated with the three convec-
tion potential thresholds are shown in Fig. 8, which 
(for brevity) are shown only for the spring season.  
Several features are noteworthy.  The peak TS 
value near 0.5 for the medium potential threshold 
at the 1-h projection indicates high forecast accu-
racy, as it means about 50% of the forecast and 
observed convection “envelope” area is correctly 
forecast.  Recall, however, the 1-h LAMP forecast 
is largely a “nowcast,” as noted in section 5.2.  An-
other feature in Fig. 8 is that the TS’s for high po-
tential are much lower than for the low and medium 
potential thresholds.  This result reflects a com-
monly-known property of the TS, which is that peak 
values result from slight over-forecasting.  Recall 
that high convection potential strongly under-
forecasts convection, which is reflected in the bias 
scores in Fig. 8.  Note also that for the (short) in-
dependent sample at hand, the bias for the medi-
um threshold is around 1.0 and that for the low 
threshold is around 2.5; each of these bias levels 
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is quite close to the prescribed values used for de-
riving the associated probability thresholds (see 
previous subsection). 
 
7. SUMMARY, FINDINGS, AND COMMENTS 
 
 The object of this study was to develop LAMP 
convection probabilities and potential with im-
proved temporal-spatial resolution and skill at least 
as high as that exhibited by the currently opera-
tional 2-h LAMP convection product.  The temporal 
and spatial resolution of the new 1-h convection 
predictand was doubled, and the first time use of 
fine-scale predictors based on MRMS and total 
lightning observations and HRRR model output 
resulted in a clear increase in spatial detail in the 
1-h product over that exhibited by the 2-h opera-
tional product.  Also, objective and subjective fore-
cast performance evaluations revealed that skill of 
the new product exceeds that for the current oper-
ational product out to about 18 hours after LAMP 
cycle time; afterward skill for the two probability 
products appears similar.  The forecast perfor-
mance improvement is most evident in the 1-16 h 
projection range, which is due to strong predictor 
contributions from the observational and HRRR 
predictors. 
 
 The skill of the 1-h probabilities is quite high in 
the first few hours after LAMP model cycle time, 
which is a reflection of the dominant predictor con-
tribution of the fine scale MRMS and total lightning 
observational predictors.  Still, the skill drop-off 
with projection in this range is steep, indicating a 
rapid loss in predictive value with time of these 
observational predictors.  For longer forecast pro-
jections, a strong contribution from HRRR predic-
tors results in a levelling-off of LAMP skill with 
projection over about the next 12 hours.  After-
wards the skill exhibits a slow fall, which indicates 
weak predictive value of “persisted” 15-h HRRR 
forecasts and thus a near total reliance on large 
scale MOS convection probability predictors. 
 
 To improve the quality of the 1-h convection 
predictand and MRMS predictors, a supplemental 
quality control process was developed and applied 
to fine-scale MRMS reflectivity grids.  Evidence 
was presented to show that the QC effectively re-
moved random and systematic non-precipitation 
echoes.  The QC process also includes selective 
grid masking to remove MRMS data where the 
radar coverage is poor.  An example case was 
shown to illustrate the positive impact of the QC on 
the convection probabilities. 
 

 Similar to that for the currently-operational 2-h 
LAMP convection product, the 1-h LAMP convec-
tion probabilities incorporate newly developed 
GFS-based and NAM-based MOS 1-h convection 
probabilities.  Skill comparisons between the LAMP 
and MOS probabilities reveal that LAMP clearly 
improved on MOS at all projections.  For long 
LAMP projections, where the predictive contribu-
tions from the fine-scale observational and HRRR 
predictors are small or non-existent, the LAMP im-
provement on MOS is evidently due to several in-
dividual skill benefits that result from the inclusion 
of non-regionalized MOS probabilities (and associ-
ated supplementary predictors) in the regionalized 
LAMP convection probability regression equations. 
 
 Lastly, a convection potential product was de-
rived from the 1-h probabilities, as done previously 
for the 2-h probabilities.  Attributes of convection 
potential were discussed to show how the product 
can aid interpretation of the probabilities, thus en-
hancing their guidance value. 
 
 Presently, the LAMP 1-h convection probability 
and potential guidance is produced experimentally 
in real time for the 00, 06, 12, and 18 UTC cycles, 
and forecast maps are posted at 
http://www.nws.noaa.gov/mdl/lamp/cnv1h.php for 
field evaluation.  In the near future the product will 
be expanded to include additional LAMP cycles 
and eventually to cover all 24 hourly cycles.  Ulti-
mately, we anticipate the new 1-h product will op-
erationally replace the present 2-h product by early 
2017. 
 
 Finally, two comments deserve mention.  
(1) The non-availability of HRRR model forecasts 
beyond 15 hours results a significant loss in the 
quality of the LAMP convection forecasts in the 
15–25 h LAMP projection range.  A forecast range 
extension of the operational HRRR model is need-
ed to remedy this problem.  (2) The especially high 
skill of LAMP convection forecasts in the first sev-
eral hours after MRMS and total lightning data cut-
off time suggests substantial forecast guidance 
gains from additional LAMP model runs (with short 
projections) between the standard hourly runs.  
Thus we are considering running the model exper-
imentally three additional times per hour at inter-
vals of 15 minutes with a maximum forecast 
projection of four hours. 
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Table 1.  Candidate OBS, HRRR, and MOS predictors.   Abbreviations:  OBS = observational; HRRR = 
High Resolution Rapid Refresh Model; MOS = Model Output Statistics; hh = clock hour, which is the 
same as LAMP model cycle time; max = maximum; cref = composite reflectivity; cape = convective 
available potential energy; vil = vertically integrated liquid; TL = total lightning; GFS = Global Forecast 
System; NAM = North American Mesoscale model; topography = gridded terrain elevation; RF = rela-
tive frequency.  Note that (1) the valid time is specified for each OBS predictor.  For example, the nota-
tion hh:00 indicates the valid time is the top of the hour hh; hh-1:30 means the observation is valid 
30 minutes past the previous hour.  Also, each OBS predictor is specified as “initial” and “advected” 
(see text); (2) each of the OBS and HRRR predictors is used in continuous value and grid binary 
forms; (3) MOS convection probabilities are valid for the same 1-h valid period as for LAMP. 

   

                        OBS                                                                                            HRRR      . 

1.  MRMS max cref at hh:00                                                                        cref 
2.  MRMS max cref at hh-1:30                                                                     vil 
3.  MRMS max cref at hh:00 – MRMS max cref at hh-1:30                         1-h total precipitation amount 
4.  MRMS max vil at hh:00                                                                           surface moisture divergence 
5.  60 min TL count ending hh:00                                                                 cape 
6.  30 min TL count ending hh:00                                                                 precipitable water 
7.  30 min TL count ending hh:00 – 30 min TL count ending hh-1:30          lifted index 
8.                                                                                                                   lightning threat                       

                                                       MOS        . 

1.                               GFS-based convection probability 
2.                               NAM-based convection probability 
3.                               GFS-based convection probability x NAM-based convection probability 
4.                               GFS-based convection probability x convection monthly RF 
5.                               NAM-based convection probability x convection monthly RF 
6.                               GFS-based convection probability x topography 
7.                               NAM-based convection probability x topography 

 
 
 
Table 2.  Basic aspects of convection potential  
   

          Threshold probability                 Convection threat category                     Bias range       
                     low                                              low                                              2.70 – 2.83 
                     medium                                       medium                                      1.03 – 1.13 

                     high                                             high                                            0.38 – 0.43 
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Figure 1a.  Relative frequency (%) of “raw MRMS” ≥ 40 dBZ maximum composite reflectivity in 5-km grid 

boxes at hh:00 UTC (hh = 00, 01, …, 23) during April – September of 2011 - 2014.  “Raw MRMS” de-
notes MRMS data as obtained from NOAA’s National Severe Storms Laboratory (NSSL).  The rectan-
gular area bounded by bold black lines is magnified below the CONUS map.  Black areas are outside 
the MRMS coverage area. 
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Figure1b.  As in Fig. 1a, except after MDL supplemental quality control (QC) processes were applied.  

Black (missing data) areas inside the MRMS coverage area result from the application of a “static 
mask” -- a component of the QC processes (see text).  
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Figure 2.  LAMP convection overlapping geographical regions and CONUS forecast domain. 
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Figure 3.  Seasonal Brier Skill Score for individual regions and for the CONUS (regions listed in legend 

are as in Fig. 2).  The dependent sample for “spring” (upper left panel) consists of 16 March – 30 June, 
2012 – 2015 , except for 2015 when the period ends 31 May; for “summer” (lower-left pane) the sam-
ple consists of 01 July – 15 October, 2012 – 2015, except for 2015 when the period ends 31 August; 
for “cool” (upper right panel) the sample consists of 16 October – 15 March, 2012 – 2015, except for 
2015 when the period ends 14 February. 
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Figure 4.  Seasonal mean Brier Skill Score for CONUS for convection probabilities for the LAMP 18 UTC 

cycle and the associated 12 UTC MOS cycle.  The legend notation is: “1h LAMP” denotes 1-h LAMP 
probability; “1h NAM (GFS) MOS” denotes 1-h NAM- (GFS-) based MOS probability; “2h LAMP” de-
notes 2-h LAMP probability.  In (a) the 30-day independent “spring” sample is for 01 – 30 June 2015; 
the corresponding “summer” sample in (b) is for 01 – 30 September 2015, and the “cool” sample in (c) 
is for 15 February – 15 March, 2015.  The dependent spring season sample used in (d) is for 16 March 
– 30 June of 2012 – 2015.  [Note that for “1h LAMP” in (d) the last 30 days of the “dependent” sample 
is actually the same independent sample used in (a).] 
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Figure 5a.  LAMP 2-h operational convection probability (left) and 1-h upgraded (experimental) convec-

tion probability (right) for the 3-h forecast projection from 1800 UTC, 23 December 2015.  Note that the 
2-h and 1-h valid periods each end at the forecast projection time.  The “verifying map,” which is ob-
tained from http://nmq.ou.edu/applications/qvs_2d_maps_main.html, is the MRMS composite reflec-
tivity at 2030 UTC (30 minutes beyond the center of the 2-h valid period and at the center of the 1-h 
valid period).  The red ellipse superimposed on all three maps points to an intense convection line in 
the MRMS map, for which the 1-h probability pattern “has better spatial focus and positioning.” 

 
 
 

http://nmq.ou.edu/applications/qvs_2d_maps_main.html
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Figure 5b.  As for Fig. 5a, except for the 12-h forecast projection.  The labels “A”, “B”, and “C” point to 

specific map features noted in the highlighted text above the probability maps and also discussed in 
the text body. 
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Figure 5c.  As in Fig. 5a except for the 24-h forecast projection. 
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Figure 6.  1-h LAMP convection probability (%) for 1200 – 1300 UTC, 05 June 2014 (top) before (left) and 

after (right) the MDL supplemental quality control (QC) program was applied to the base 5-km MRMS 
maximum composite reflectivity grid valid at the 1200 UTC LAMP model cycle time (bottom left).  The 
corresponding reflectivity map following the QC application is shown in the lower right panel.  Within 
the oval shown (bold white outline), the dynamic QC process (see text) masked out anomalous propa-
gation (AP) echoes with reflectivities ≥ 35 dBZ (small black spots within oval in lower right map). 
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Figure 7.  As for Fig. 5, except convection potential and verifying map not shown. 
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Figure. 8.  CONUS threat score and bias for three LAMP convection potential thresholds indicated in the 

legend: “Low” denotes low potential threshold, “Med” denotes medium potential threshold, and “High” 
denotes high potential.  The scores apply to the 18 UTC LAMP cycle and for the same 01 June – 
30 June 2015 independent spring season sample used for the Brier Skill Score in Fig. 4a. 
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