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Abstract	
	

	 This	 study	 is	 the	 first	 known	aviation-based	 application	of	NOAA’s	 second-

generation	 Global	 Ensemble	 Forecast	 System	 (GEFS)	 reforecast	 (i.e.	 hindcast	 or	

retrospective	 forecast)	 dataset.	 The	 study	 produced	 a	 downscaled	 probabilistic	

prediction	 of	 instrument	 flight	 conditions	 at	 major	 U.S.	 airports	 using	 an	 analog	

approach.	 	This	represents	an	initial	step	toward	applications	of	reforecast	data	to	

probabilistic	aviation	decision	support	services.	This	type	of	post-processing	could	

one	 day	 form	 the	 backbone	 of	 the	 National	Weather	 Service's	 common	 operating	

procedure	(COP)	for	aviation.	

		 Results	 from	this	study	show	that	even	at	 the	very	coarse	resolution	of	 the	

GEFS	reforecast	dataset,	the	analog	approach	yielded	skillful	probabilistic	forecasts	

of	 IFR	 and	 VFR	 flight	 conditions	 at	most	 of	 the	 FAA’s	 Core	 30	 airports.	 This	was	

particularly	true	over	the	central	and	eastern	U.S.,	including	the	important	“Golden	

Triangle,”	 where	 aircraft	 flow	 affects	 traffic	 flow	 management	 across	 the	 entire	

national	airspace	system.	 	Additionally,	 the	results	suggest	 that	reforecast	systems	

utilizing	 better	 horizontal	 and	 vertical	 resolution	 in	 the	 modeling	 system	 and	

reforecast	archive	would	be	very	useful	for	aviation	forecasting	applications.			

	

	

	

	



1.0			Introduction	
	

	 The	 Next	 Generation	 Global	 Prediction	 System	 (NGGPS)	 is	 a	 National	

Weather	 Service	 (NWS)	 initiative	 to	 expand	 and	 accelerate	 development	 and	

implementation	 of	 global	 weather	 prediction	 and	 data	 assimilation,	 as	 well	 as	

increase	the	accuracy	of	weather	forecasts	and	build	foundational	forecast	guidance	

for	 the	next	several	decades.	 	As	part	of	 this	 initiative,	 this	project	utilizes	NOAA's	

2nd-Generation	Global	Ensemble	Forecasting	System	(GEFS)	to	explore	cloud	ceiling	

and	visibility	prediction	at	major	airports	across	the	United	States.		While	numerous	

studies	have	demonstrated	the	value	of	reforecasting	for	ensemble	post-processing	

and	decision	support	 (e.g.,	Hamill	et	al.	2006,	2013,	2015;	Wilks	and	Hamill	2007;	

Hagedorn	et	al.	2008),	none	have	been	specific	to	aviation.			

	 Poor	weather	conditions	have	been	shown	to	dramatically	increase	the	rate	

of	aviation	fatalities.	For	example,	under	instrument	flight	rules	(IFR),	defined	as	a	

cloud	 ceiling	 below	 1000	 feet	 above	 ground	 level	 and/or	 a	 visibility	 less	 than	 3	

miles,	 about	 two-thirds	 of	 all	 general	 aviation	 accidents	 are	 fatal	 -	 a	 rate	 much	

higher	than	the	overall	 fatality	rate	 for	all	general	aviation	incidents	(NTSB	2014).	

Similarly,	 between	 1983	 and	 2009	 over	 the	 Gulf	 of	 Mexico,	 16%	 of	 helicopter	

accidents	 and	 40%	 of	 the	 resulting	 fatalities	 were	 attributable	 to	 poor	 weather	

conditions	(Baker	et	al.	2011).	

In	 addition	 to	 safety,	 accurate	predictions	 of	 ceiling	 and	 visibility	 have	 far-

reaching	 economic	 and	 traffic	 flow	 management	 implications.	 	 Probabilistic	

forecasts	 for	 both	 visibility	 conditions	 and	 ceilings	 surrounding	 airports	 allow	 for	

cost-based	critical	decision	thresholds	to	be	created	 for	 fuel	 loading	 in	accordance	

with	airlines'	planning	timelines	(Keith	and	Leyton	2007).		Increasing	skill	at	longer	

lead	times	allows	for	more	efficient	and	effective	planning,	with	potential	savings	of	

tens	of	millions	of	dollars	annually	via	fuel	cost	reductions	for	many	major	airlines	

(Keith	 and	 Leyton	 2007).	 	 Additionally,	 the	 ability	 to	 adjust	 flight	 plans	 based	 on		

predicted	 ceilings	 and	 visibilities	 that	 reduce	 arrival	 and	 departure	 rates	 could	

streamline	air	traffic	movement	across	the	United	States.	



This	 study	 takes	 a	 preliminary	 look	 at	 downscaling	NOAA's	 2nd-generation	

global	ensemble	reforecast	dataset	to	the	FAA’s	Core	30	airports	(Table	1).	The	Core	

30	 airports	 are	 30	 of	 the	 nation’s	 busiest	 airports	 used	 by	 the	 FAA	 to	 monitor	

aviation	 system	 safety	 and	 efficiency.	 All	 Core	 30	 airports	 are	 used	 in	 this	 study,	

with	 the	 exception	 of	 Honolulu	 (HNL)..	 	 A	 model	 climatology	 and	 probabilistic	

ceiling	 and	 visibility	 forecasts	 through	 30	 hours	 are	 created	 using	 an	 analog	

reforecast	approach.		Thirty	hours	was	chosen	because	it	encompasses	the	24-hour	

period	 of	 most	 Terminal	 Aerodrome	 Forecasts	 (TAFs),	 and	 in	 the	 aviation	

community	is	a	reasonable	traffic	flow	management	outlook	period.	 	Similar	to	the	

work	 of	 Hamill	 et	 al.	 (2004),	 the	 ensemble	 mean	 reforecasts	 are	 used	 for	

determining	analogs	at	all	airports;	additionally,	an	approach	using	all	11	individual	

ensemble	 members	 for	 Hartsfield-Jackson	 Atlanta	 International	 Airport	 (ATL)	 is	

tested.		Historical	METAR	observations	of	ceiling	and	visibility	at	each	airport	serve	

as	ground	truth.			

	 This	 report	 provides	 a	 description	of	 the	datasets,	 an	 overview	of	 the	data	

post-processing	including	the	analog	forecast	approach,	and	the	statistical	methods	

employed.		This	is	followed	by	a	summary	of	the	analog	forecast	system	results	for	

predicting	 IFR	and	VFR,	 broken	down	 regionally	 and	 seasonally.	 	A	description	of	

the	results	for	the	individual	members	of	the	ensemble	forecast	for	ATL	follows	in	

the	same	manner.	 	This	 is	 followed	by	a	general	discussion	of	possible	reasons	for	

observed	 differences	 between	 the	 regional	 subsets,	 and	 suggestions	 for	 future	

refinements	 and	 potential	 applications	 for	 the	 aviation	 weather	 community.			

	

	

2.0			Data	
	

2.1			Model	Data	

	

	 This	 effort	 utilizes	 the	 entire	 30	 years	 of	 NOAA's	 2nd-generation	 global	

ensemble	 reforecast	 data	 set,	 which	 uses	 the	 identical	 modeling	 system	 as	

NOAA/NCEP	GEFS	version	9.0.1.		The	ensemble	forecasts	are	initialized	once	daily	at	

0000	 UTC	 to	 create	 10	 perturbed	 forecast	 members	 and	 one	 control	 forecast.		



Running	 from	 December	 1984	 to	 present,	 these	 reforecasts	 have	 been	 made	

available	 at	 3-hourly	 intervals	 for	 lead	 times	 of	 0-72	 hours,	 and	 then	 6-hourly	

intervals	out	to	16	days.	 	Global	fields	at	1ºx1º	latitude-longitude	resolution	for	98	

different	fields	are	forecast;	many	of	these	fields	are	surface	fields,	but	temperature,	

specific	 humidity,	wind	 components,	 and	 geopotential	 height	 are	 also	 available	 at	

isobaric	 and/or	 hybrid	 vertical	 levels.	 	 This	 dataset	 can	 be	 accessed	 at:	

http://www.esrl.noaa.gov/psd/forecasts/reforecast2/	 .	 	 For	 further	 information	

regarding	the	reforecast	dataset	see	Hamill	et	al.	(2013).	

	 For	 this	study,	daily	 forecasts	 from1	December	1984	 through	31	May	2015	

made	every	3	hours	with	lead	times	out	to	30	hours	are	used.		Utilized	fields	include:	

surface	 pressure,	 temperature	 at	 2m	 and	 available	 isobaric	 pressure	 levels	

(1000mb,	 850mb,	 700mb,	 500mb),	 and	 specific	 humidity	 at	 2m	 and	 available	

isobaric	pressure	levels	(1000mb,	850mb,	700mb,	500mb).	 	The	ensemble	mean	is	

used	 at	 all	 Core	 30	 airports,	 and	 for	 comparison	 the	 ensemble	members	 are	 also	

used	at	ATL.	

	

2.2			Observational	Data	

	

	 For	the	same	time	period,	METARs	at	the	Core	30	airports	are	used	as	ground	

truth	 for	ceiling	height	and	surface	visibility.	 	Data	were	accessed	 through	NCDC's	

Climate	Data	Online	portal	at	www.ncdc.noaa.gov.	

	

	

3.0			Methods	
	

3.1			Data	Preparation	

	

	 For	 each	 airport,	 the	 four	 surrounding	 datapoints	 are	 stripped.	 Bilinear	

interpolation	 is	 applied	 to	 the	 four	 points	 to	 estimate	 the	 forecast	 value	 at	 the	

airport’s	location.		Relative	humidity	(RH)	is	calculated	at	every	pressure	level	from	

the	forecast	temperature	(T),	saturation	mixing	ratio	(ws)	and	specific	humidity	(q)	

fields	via	



.	

	

Vertical	profiles	of	dew	point	temperature	(Td)	are	derived	from	the	moisture	and	

temperature	fields	via	

	

	 .	

	

	 METAR	 observations	 at	 the	 forecast	 valid	 times	 are	 used	 for	 analog	

downscaling	 and	 verification	 (i.e.,	 every	 third	 hour	 from	00	UTC	 through	 forecast	

hour	30).		In	very	rare	instances,	when	reported	observations	were	not	available	on	

the	 hour,	 values	 were	 linearly	 interpolated	 in	 time	 to	 create	 an	 on-the-hour	

observation.	 	The	primary	METAR	observations	of	 interest	are	cloud	ceiling	height	

and	 visibility.	 	 The	 reported	 ceiling	 height	 and	 visibility	 observations	 are	 then	

classified	into	flight	regulation	categories	(Table	2).			

	

3.2			Analog	Forecasts	

	

An	 analog	 approach	 is	 used	 to	 identify	 similar	 historical	 reforecasts	 to	

downscale	 the	global	 reforecast	 to	 a	point	 (in	 the	manner	of,	 e.g.,	Toth	1989;	Van	

den	 Dool	 1989).	 	 Vertical	 profiles	 (“soundings”)	 of	 temperature	 and	 dew	 point	

temperature	are	created	by	concatenating	model	output	grids	at	2-meters	above	the	

surface,	 1000mb,	 850mb,	 700mb,	 and	 500mb.	 If	 the	modeled	 surface	 pressure	 is	

less	 than	 any	 of	 the	 isobaric	 grid	 levels,	 then	 those	 levels	 are	 removed	 from	 the	

sounding.		Every	fifth	day	starting	with	1	December	1984,	the	forecast	sounding	at	a	

given	lead	time	is	compared	to	all	historical	reforecast	soundings	at	the	same	lead	

time	 via	 a	 normalized	 root-mean-squared	 difference	 (RMSD).	 	 Variables	 are	

normalized	 at	 each	 pressure	 level	 by	 typical	 errors	 assigned	 in	 the	 Eta	 Data	

Assimilation/Forecast	 System	 (EDAS)	 to	 rawinsonde	 observations	 (see	 Zapotocny	

et	al.	2000	for	values).	The	equation	for	determining	the	normalized	RMSD	is	

	



	 	
	

where		T	is	temperature,	Td	is	dew	point	temperature,	p	is	the	vertical	level,	m	is	the	

model	(reference	sounding)	value,	r	is	a	reforecast	value,	and	e	is	the	representative	

measurement	 error.	 	 The	 50	 soundings	 corresponding	 to	 the	 smallest	 normalized	

RMSD	are	considered	analog	forecast	matches.		The	quantity	of	50	analog	soundings	

is	chosen	so	as	to	provide	reasonable	sample	size	without	causing	over-filtering,	and	

has	 previously	 been	 identified	 as	 adequate	 for	 the	 short	 forecast	 lead	 times	

considered	 here	 (Hamill	 et	 al.	 2015).	 	 This	 process	 is	 repeated	 every	 fifth	 day	

through	the	entire	reforecast	period.		Every	fifth	day	is	used	to	avoid	oversampling	

any	single	weather	regime.	 	Data	denial	is	employed	for	verification	and	validation	

of	 the	 technique,	 and	 the	 original	 forecast	 sounding	 is	 removed	 from	 the	

comparison	such	that	the	date	of	interest	is	never	included	as	an	analog.	 	It	should	

be	noted	 that	we	also	considered	analogs	 including	wind	profiles,	but	 this	did	not	

significantly	change	the	results.		METAR	observations	at	the	verifying	time	for	each	

of	 the	 50	 analog	 reforecast	matches	 provide	 ceiling	 and	 visibility	 observations	 to	

determine	 the	 downscaled	 flight	 category	 at	 the	 airport.	 	 Probability	 of	 observed	

flight	categories	are	then	determined	using	these	observations.		For	example,	if	20	of	

the	top	50	matched	soundings'	METARs	report	IFR	conditions,	the	probability	of	IFR	

is	40%.	 	This	process	 is	repeated	for	every	airport	 for	each	of	the	11	forecast	 lead	

times.		More	sophisticated	methods	of	ranking	or	weighting	the	analog	matches	may	

improve	 results,	 but	 were	 not	 tested	 here.	 	 Because	 50	 matches	 is	 a	 somewhat	

arbitrary	 choice,	 perfectly	 reliable	 probabilities	 are	 unlikely	 without	 further	

calibration.			

	

3.3			Model	Verification	

	

	 Brier	Skill	Scores	(BSS)	are	employed	here	as	a	metric	of	skill	in	forecasting	

flight	 condition	 categories.	 	 The	 BSS	 is	 a	 measure	 of	 the	 mean-square	 error	 of	 a	

probability	forecast	for	a	dichotomous	event	normalized	by	the	same	for	a	reference	



forecast,	 in	 this	 case	 the	 observed	 sample	 climatology	 constructed	 for	 December	

1984	through	May	2015	(Wilks	2011).		Assuming	that	each	forecast	is	equally	likely,	

the	Brier	Score	of	the	forecast,	BSf,	is	calculated	as	

	

,	

	

where	Pi	is	the	forecasted	event	probability,	and	Oi	is	either	1	or	0	if	the	event	was	

observed	or	not.		A	Brier	Skill	Score	(BSS)	is	then	calculated	as:	

	

,		

	

where	BSr	 is	 the	Brier	 Score	of	 the	 reference	probability	 forecast,	 in	 this	 case	 the	

constructed	(sample)	climatology.	 	A	BSS	of	0.0	 indicates	 that	 the	 forecast	has	 the	

same	skill	as	climatology,	a	BSS	of	1.0	indicates	a	perfect	forecast,	and	negative	BSS	

indicates	 less	 skill	 than	 climatology.	 	 A	 BSS	 can	 be	 interpreted	 as	 a	 percent	

improvement	over	the	reference	dataset.	

			

3.4			Ensemble	members	

	

	 At	ATL	a	deeper	analysis	considering	all	11	ensemble	members	is	tested.		The	

above	steps	described	in	3.2	and	3.3	are	completed	as	before,	but	rather	than	using	

the	ensemble	mean,	analogs	for	each	ensemble	member	are	found.	 	For	each	date-

lead	 time	 forecast,	 the	 50	 analogs	 for	 each	 ensemble	member	 are	 combined	 for	 a	

total	of	550	days	(allowing	repeats)	when	calculating	probabilities.		From	this	set	of	

550	 days,	 the	 subset	 consisting	 of	 only	 the	 unique	 analog	 dates	 for	 each	 forecast	

lead	time	is	also	considered.			

	

	

4.0			Results	
	

4.1			Ensemble	Mean	

	



	 BSS	versus	forecast	lead	time	for	each	airport	is	shown	in	Figures	1-6	and	7-

12	for	IFR	conditions	and	VFR	conditions,	respectively.		Note:	MVFR	conditions	were	

examined	but	are	not	included	in	these	results	due	to	the	coarse	vertical	resolution	

of	 the	 model	 and	 archive,	 and,	 thus,	 inability	 to	 resolve	 thin	 slices	 of	 lower	

tropospheric	 fields.	 	Recall	 that	all	 forecasts	are	 initialized	at	0000	UTC.	 	To	more	

easily	examine	the	results,	the	Core	30	airports	are	categorized	into	regions:	West,	

Midwest,	New	England,	 and	South	 (Table	1).	 	 Forecast	 skill	 relative	 to	 the	 sample	

climate	of	 the	study	period	(December	1984	through	May	2015	 for	all	 seasons,	or	

for	only	 the	applicable	months	within	 this	 time	period	 for	 each	particular	 season;	

hereafter	 simply	 referred	 to	 as	 “climatology”)	 is	 examined	 for	 each	 forecast	 lead	

time	for	the	entire	record	as	well	as	for	each	season.			

	

4.1.1			IFR	
	

4.1.1.1			All	seasons	

	

	 The	GEFS	Reforecast	2	considered	through	this	analog	downscaling	method	

shows	skillful	improvement	over	climatology	(IOC)	for	forecasting	IFR	conditions	at	

the	majority	 of	 the	 Core	 30	 airports	 for	 all	 forecast	 lead	 times	 (Figures	 1	 and	 2).		

This	 is	 particularly	 the	 case	 for	 airports	 in	 the	Midwest,	New	England,	 and	 South	

(sans	several	in	Florida)	with	a	15-25%	IOC.		For	nearly	all	airports,	skill	decreases	

with	 increasing	 forecast	 lead	 time.	 	 Airports	 in	 New	 England,	 the	 Midwest,	 and	

South,	 except	 Florida	 and	 Memphis,	 show	 a	 diurnal	 cycle	 in	 skill	 with	 maximum	

occurring	during	late	afternoon	and	early	evening	local	time.	 	Forecast	skill	for	the	

Florida	 airport	 cluster	 remain	well	 separated	 from	 the	 rest	 of	 the	 airports	 in	 the	

South,	particularly	during	 these	 late	 afternoon/early	 evening	 times	with	 IOC	of	1-

10%.	 	This	analog	downscaling	method	for	airports	in	the	West	and	Florida	shows	

the	least	improvement	over	climatology,	with	PHX,	MIA,	and	FLL	showing	negative	

skill	 during	 short	 lead	 times,	with	 the	addition	of	DEN	and	TPA	showing	negative	

skill	at	long	lead	times.	

	

4.1.1.2			Winter	(DJF)	

	



	 BSS	 versus	 forecast	 lead	 time	 for	 just	 the	 winter	 months	 (DJF)	 for	 each	

airport	separated	by	geographic	region	are	shown	in	Figure	3.		Throughout	all	lead	

times	forecasts	for	the	majority	of	airports	show	IOC	with	the	exception	of	three	in	

the	 West	 (SEA,	 DEN,	 PHX)	 and	 three	 in	 Florida	 (FLL,	 MIA,	 TPA).	 	 In	 particular	

opposition	to	all	seasons,	DEN	at	a	forecast	lead	time	of	9	hours	has	a	BSS	of	-0.15.		

In	contrast	to	all	seasons,	only	considering	the	winter	months,	BSSs	generally	show	

a	very	low	amplitude	diurnal	cycle,	with	the	exception	of	forecasts	for	airports	in	the	

Midwest.	 	 Additionally,	 BSSs	 generally	 do	 not	 show	 a	 marked	 decrease	 in	 skill	

between	0-hour	and	30-hour	lead	times	as	they	did	in	all	seasons.	

	

4.1.1.3			Spring	(MAM)	

	

	 BSSs	 for	 IFR	 conditions	 versus	 lead	 time	 are	 shown	 in	 Figure	 4	 for	 spring	

months	(MAM).		For	the	majority	of	airports,	BSSs	are	highest	during	spring	at	early	

lead	times	compared	to	other	or	all	seasons,	and	particularly	New	England	and	the	

Midwest	show	the	greatest	decrease	(~20%)	in	BSS	by	30-hour	lead	times.	 	 In	the	

South,	BSSs	for	the	Texas	airports	more	closely	match	the	continued	low	and	nearly	

flat	BSSs	of	the	Florida	cluster	(lower	right	panel,	dashed	lines).		BSSs	for	CLT	show	

the	greatest	IOC	for	all	airports	during	spring,	and	compared	to	all	times.		Forecasts	

for	 airports	 in	 the	West	 are	 nearly	 constant	 throughout	 lead	 times	 during	 spring,	

except	for	SLC	which	has	large	jumps	in	BSS	during	early	lead	times	and	some	of	the	

largest	negative	skill	scores	reported	in	this	study.		The	saw	tooth	pattern	at	SLC	is	

characteristic	 of	 a	 small	 sample	 size	 (i.e.,	 very	 little	 IFR)	 consistent	 with	 the	

climatological	 frequency	of	0.5-2%,	depending	on	 time	of	day.	 	PHX	and	LAS	both	

report	 intermittent	BSSs.	 	 This	 is	 a	 result	 of	 IFR	not	 being	 observed	 during	 these	

lead	times,	causing	a	zero	denominator	in	the	BSS	equation	and	an	undefined	value	

being	reported,	and	thus	no	value	plotted.	

	

4.1.1.4			Summer	(JJA)	

	

Among	the	seasons,	summer	contains	the	most	variability	and	least	distinct	

patterns	 of	 forecast	 skill	 scores	 throughout	 the	 lead	 times	 (Figure	 5).	 	 In	 New	

England,	 slight	 negative	 BSSs	 are	 observed	 in	 IAD,	 DCA,	 and	 PHL	 during	 local	



evening	hours	(forecast	hours	15-24),	while	the	remaining	airports	remain	positive	

throughout,	but	 lower	 than	 ‘all	 season’	 values.	 	 In	 the	West,	PHX	has	no	observed	

IFR	during	the	majority	of	daylight	hours	(12-24	UTC)	and	both	SLC	and	LAS	have	

no	 observed	 IFR	 at	 any	 time.	 	 In	 the	 South,	 similar	 to	 spring,	 the	 Texas	 airports,	

MEM,	and	the	Florida	airports	dip	in	and	out	of	negative	BSSs.					

	

4.1.1.5			Autumn	(SON)		

	

	 Figure	6	is	as	above,	but	for	autumn	months	(SON).		On	the	whole,	autumn	is	

a	 clear	 transition	 in	 values	 and	 pattern	 of	 BSS	 between	 the	 low,	 nearly	 constant	

values	of	summer	and	higher,	slightly	cyclic	BSSs	of	winter.		For	all	airports	in	New	

England,	 forecasts	show	skill	over	climatology	for	all	 lead	times.	 	 In	addition,	BSSs	

for	 New	 England	 show	 a	 strong	 diurnal	 cycle	 with	 the	 greatest	 skill	 during	 late	

afternoon.	 	 Forecast	 skill	 for	 airports	 in	 the	 South	 show	 separation	 between	 the	

cluster	 of	 airports	 in	 Florida	 and	 the	 other	 southern	 airports	 starting	 around	 12-

hour	lead	times,	although	all	airports	show	a	decrease	(~7%)	in	BSS	with	increasing	

lead	time.		BSSs	for	airports	in	the	West	appear	unorganized,	with	IFR	only	observed	

in	LAS	during	autumn	during	21-	and	24-hour	lead	times	(local	evening	hours).	

	

4.1.2			VFR	
	

4.1.2.1			All	seasons	

	

	 BSSs	 for	 VFR	 conditions	 for	 all	 seasons	 versus	 lead	 time	 are	 displayed	 in	

Figures	 7	 and	 8.	 	 Considering	 all	 seasons	 forecasts	 for	 VFR	 utilizing	 this	 analog	

approach	 show	 IOC	 for	 all	 lead	 times	 at	 all	 airports.	 	 Generally,	 forecasts	 of	 VFR	

show	greater	improvement	over	climatology	than	are	seen	for	IFR.		Regionally,	the	

greatest	skill	is	seen	in	New	England,	with	high	skill	seen	in	the	Midwest	and	much	

of	the	South.		These	areas	have	many	Core	30	airports	with	values	around	30-40%	

IOC.	 	As	with	IFR,	BSSs	for	the	Florida	airports	are	well	separated	from	the	rest	of	

the	 airports	 in	 the	 South.	 	 The	 low	 and	 fairly	 constant	 BSSs	 seen	 in	 the	 Florida	

airports	 are	 similar	 to	 those	 observed	 in	 LAS	 and	 DEN.	 	 Excluding	 the	West	 and	



Florida	airports,	 a	diurnal	 cycle	 in	BSS	 is	observed	with	maxima	occurring	during	

local	late	afternoon.	

	

4.1.2.2			Winter	(DJF)	

	

	 During	 winter	 the	 diurnal	 cycle	 observed	 when	 considering	 all	 seasons	

remains	particularly	prevalent	in	New	England	and	the	Midwest,	with	BSSs	in	New	

England	being	nearly	 twice	as	 large	 (Figure	9).	 	 In	 the	South,	 forecasts	 for	Florida	

show	 increasing	 skill	 compared	 to	 ‘all	 season’	 BSSs,	 thereby	 decreasing	 the	

separation	in	skill	between	them	and	the	other	southern	airports.		For	all	airports	a	

decrease	in	skill	is	observed	with	increasing	forecast	lead	time.	

	

4.1.2.3			Transitional	Seasons	(MAM,	SON)	

	

	 During	spring	all	airports,	except	those	in	Florida	and	most	in	the	West,	show	

a	decrease	in	BSS	with	increasing	lead	time	(Figure	10).		In	New	England,	there	is	a	

dramatic	drop	in	BSS	(~25%	absolute	drop	in	IOC)	between	21-	and	27-hour	 lead	

times	for	nearly	all	airports.		A	slight	diurnal	cycle	in	BSS	is	apparent	for	airports	in	

New	England,	the	Midwest,	and	the	South,	except	FLL	and	MIA.	 	Negative	BSSs	are	

observed	in	PHX	for	long	lead	times,	and	early	leads	times	for	FLL.	 	BSSs	are	fairly	

consistent	 for	 airports	 in	 the	 West,	 with	 a	 slight	 increase	 in	 skill	 for	 California	

airports	(SFO,	LAX,	SAN)	during	local	early	morning	hours.			

	 Patterns	of	BSS	during	autumn	months	(Figure	12),	similar	to	spring,	show	a	

more	organized	regime,	particularly	in	New	England,	with	a	clustering	of	BSS	values	

and	clear	diurnal	cycle.	 	In	contrast,	the	largest	separation	between	skill	scores	for	

the	Florida	airports	and	those	in	the	other	southern	airports	occurs	during	autumn,	

similar	to	the	pattern	observed	when	considering	all	seasons.		DEN	and	LAS,	in	the	

West,	 show	 similar	 low	BSSs	 as	 those	 calculated	 for	 the	 Florida	 airports.	 	 During	

autumn,	SLC	and	LAS	are	the	only	airports	to	have	negative	BSSs.		As	with	the	other	

seasons,	BSSs	in	the	West	are	generally	lower	than	the	other	regions,	and	BSSs	are	

generally	highest	across	New	England.			

	



4.1.2.4			Summer	(JJA)	 	

	

	 Forecasts	 resulting	 from	 this	 analog	method	 show	 the	 lowest	 IOC	 for	 VFR	

during	summer	in	comparison	to	the	other	seasons	(Figure	11).		BSSs	for	airports	in	

the	 West	 and	 the	 South	 show	 little	 organization,	 with	 negative	 skill	 observed	 at	

various	lead	times	for	SLC,	PHX,	LAS,	MIA,	TPA,	and	IAH.		In	the	West,	BSSs	for	LAS	

hover	 around	 zero	 (equally	 as	 good	 as	 using	 climatology)	 at	 all	 lead	 times,	while	

PHX,	 which	 has	 nearly	 100%	 VFR	 climatologically	 throughout	 all	 hours	 but	

reference	Brier	Score	of	0,	reports	an	undefined	BSS	through	the	late	afternoon	and	

evening	hours.	 	BSSs	 for	New	England	and	 the	Midwest	airports	generally	 show	a	

decrease	 in	 skill	 with	 increasing	 lead	 time.	 	 Additionally,	 BSSs	 for	 airports	 in	 the	

Midwest	show	a	slight	diurnal	cycle	with	maximum	improvement	over	climatology	

seen	during	afternoon	hours,	and	minima	during	late	night	hours.	

	

4.1.3			Attributes	Diagrams	
	

4.1.3.1			Golden	Triangle	

	

	 Attributes	diagrams	are	utilized	to	further	examine	the	probabilistic	skill	of	

this	analog	 forecast	approach	to	 forecast	 IFR	and	VFR	at	0-,	12-,	and	24-hour	 lead	

times	 by	 compositing	 forecasts	 for	 the	 five	 airports	 in	 the	Golden	Triangle	 for	 all	

seasons	 (ATL,	 MDW,	 ORD,	 JFK,	 LGA;	 Figure	 13).	 	 Generally,	 forecasts	 for	 IFR	 are	

fairly	reliable	at	all	 three	 lead	times.	This	 is	a	 little	surprising	 in	 that	choosing	the	

top	50	matches	was	somewhat	arbitrary,	and	no	further	calibration	was	performed	

to	improve	reliability.		In	forecasting	IFR,	the	highest	reliability	(best	calibration)	for	

the	Golden	Triangle	exists	for	12-hour	lead	times.		Results	at	both	12-hour	and	24-

hour	 lead	 times	 are	 quite	 reliable	 through	 about	 50%	 and	 show	 good	 resolution	

through	 about	 70%.	 	 As	 the	 sample	 size	 decreases	 above	 about	 50%,	 the	 results	

become	a	little	choppy	due	to	decreasing	sample	size.	Unsurprisingly,	the	number	of	

observations	in	each	forecast	probability	bin	is	more	evenly	distributed	across	the	

bins	for	the	12-hour	lead	time	forecasts	than	the	other	two	lead	times.		This	would	

be	 the	 early	morning	 hours	 (local	 time)	when	 climatologically	 IFR	 conditions	 are	

more	prevalent.					



	 Similarly,	 forecasts	 for	 VFR	 are	more	 reliable	 at	 the	 higher	 probability	 bin	

(higher	 forecast	probabilities	 for	VFR),	and	 tend	 to	overforecast	 the	occurrence	of	

VFR	at	lower	probabilities.		Overall,	this	analog	method	shows	very	good	calibration	

for	 forecasting	VFR	 at	 both	 12-hour	 and	24-hour	 lead	 times.	 	 Forecasts	 at	 0-hour	

lead	times	also	show	very	good	reliability	for	the	highest	forecast	probabilities,	but	

overforecast	for	50%	probability	and	below.			

	

4.1.3.2			CONUS	

	

	 All	29	airports	are	composited	at	0-,	12-,	and	24-hour	lead	times	to	examine	

IFR	and	VFR	forecast	reliability	across	the	CONUS	for	all	seasons	(Figure	14).	 	For	

both	IFR	and	VFR,	forecasts	for	all	three	lead	times	show	very	good	reliability	and	

resolution.	 	 Forecasts	 at	 12-hour	 lead	 times	 show	 the	 best	 calibration,	 followed	

closely	by	24-hour	forecasts.		0-hour	lead	time	forecasts	for	IFR	have	good	reliability	

for	the	most	populated	bins,	and	start	to	underforecast	at	and	above	50%	forecast	

probability.		Conversely,	at	0-hour	lead	times	VFR	is	overforecasted	for	probabilities	

of	 20-60%.	 	 This	 composite	 of	 all	 29	 airports	 shows	 increased	 reliability	 in	

forecasting	IFR	versus	the	Golden	Triangle,	while	reliability	is	very	similar	for	VFR.		

Interestingly,	both	composites	show	similar	over-	and	underforecasting	tendencies	

for	0-hour	lead	times.	

	

4.2			Ensemble	Members:	ATL	

	

	 For	Figures	13	and	14,	the	forecast	BSSs	versus	forecast	lead	time	for	all	550	

analogs	 (50	 for	 each	ensemble	member)	are	 in	 the	 left	panel,	BSSs	 resulting	 from	

using	 just	 the	 unique	 analog	 dates	 from	 the	 larger	 pool	 of	 550	 analogs	 are	 in	 the	

middle	panel,	the	BSSs	from	the	ensemble	mean	are	on	the	right,	and	the	observed	

relative	frequencies	of	the	VFR	or	IFR	prediction	for	the	lead	time	are	displayed	in	

the	bottom	panels.	 	In	all	panels,	BSSs	for	winter	(DJF)	are	solid	black	lines,	spring	

(MAM)	 are	 dashed,	 summer	 (JJA)	 are	 dash-dot,	 autumn	 (SON)	 are	 dotted,	 and	 all	

seasons	(entire	record)	are	solid	gray.	

	



4.2.1			IFR	
	

	 Considering	 forecasts	 across	 all	 seasons	 (Figure	 15,	 solid	 gray	 lines),	 skill	

scores	 from	 ensemble	 members	 forecasting	 IFR	 (right	 and	 middle	 panel)	 are	

positive	 at	 all	 times	 with	 a	 minimum	 in	 skill	 occurring	 during	 local	 night	 and	

maximum	 skill	 over	 climatology	 at	 0-	 and	 18-hour	 lead	 times	 with	 a	 generally	

downward	 trend	 in	 skill	 with	 increasing	 forecast	 lead	 time.	 	 This	 pattern	 is	

consistent	 with	 that	 of	 BSSs	 utilizing	 the	 ensemble	 mean	 (right	 panel).	 	 The	

transitional	seasons	(MAM,	dashed	 line;	SON,	dotted	 line)	also	show	this	generally	

downward	 trend	 in	 forecast	 skill	 with	 increasing	 lead	 time.	 	 BSSs	 for	 IFR	 are	

greatest	 during	 winter	 in	 the	 late	 afternoon	 (~35%	 IOC).	 	 There	 are	 minor	

differences	 in	 skill	 between	 using	 550	 analogs	 and	 utilizing	 only	 unique	 analogs,	

with	 the	 unique	 analog	 method	 showing	 slight	 increases	 in	 IOC	 compared	 to	 all	

analogs	 during	 the	 early	 forecast	 lead	 times.	 	 Both	 analog	 methods	 utilizing	 the	

ensemble	members	show	minor	increases	in	skill	over	the	ensemble	mean	at	longer	

lead	 times.	 	 IOC	 does	 not	 appear	 to	 be	 entirely	 related	 to	 IFR	 observed	 relative	

frequency	(bottom	panels)	during	any	or	all	of	the	seasons,	except	perhaps	summer,	

but	this	relationship,	or	lack	thereof,	requires	further	study.			

	 To	 further	 investigate	 the	 probabilistic	 skill	 of	 each	 of	 these	 approaches,	

forecasts	 for	 all	 seasons	 at	 ATL	 are	 investigated	 through	 the	 use	 of	 attributes	

diagrams	at	0-,	12-,	and	24-hour	lead	times	(Figure	17).		These	attributes	diagrams	

show	 that	 all	 three	methods	 show	 skill	 across	 all	 forecast	 probabilities	 with	 few	

exceptions	 (i.e.,	 ensemble	 members	 using	 550	 analogs	 at	 24-hour	 lead	 times	 for	

20%	 and	 70%	probabilities	 and	 using	 unique	 analogs	 at	 12-hour	 lead	 times	with	

30%	 forecast	 probability,	 and	 ensemble	 mean	 for	 12-hour	 lead	 time	 and	 80%	

forecast	probability).	 	For	all	 three	 investigated	lead	times	each	method	stays	well	

away	from	the	sample	climatology	(horizontal	dashed	lines).	 	As	such,	all	methods	

have	 a	 good	 degree	 of	 resolution	 and	 are	 able	 to	 discern	 events	 with	 different	

frequencies	of	occurrence	through	60%	at	which	point	resolution	for	the	ensemble	

mean	 and	 ensemble	 member	 unique	 analog	 methods	 start	 to	 break	 down.		

Generally,	 all	 three	 methods	 are	 best	 calibrated	 at	 12-hour	 lead	 times	 when	 the	



number	of	observed	IFR	are	more	evenly	spread	across	forecast	probabilities.		At	0-	

and	12-hour	forecast	lead	times	the	550	analogs	method	shows	the	best	calibration,	

while	the	methods	using	ensemble	member	unique	analogs	and	the	ensemble	mean	

both	consistently	underforecasting	for	0-hour	lead	times.		For	24-hour	forecast	lead	

times	 using	 the	 ensemble	mean	 is	 the	most	 reliable	 at	 low	 forecast	 probabilities	

where	 the	 highest	 number	 of	 forecast	 IFR	 conditions	 occur	 (inset	 bar	 graphs),	

although	 all	 three	methods	 jump	 between	 under	 and	 over	 forecasting	 as	 forecast	

probability	increases.		

	

4.2.2			VFR	
	

	 For	VFR	conditions	(Figure	16),	utilizing	this	analog	post-processing	method	

with	ensemble	members	over	all	seasons	(solid	gray	line)	there	is	skill	in	forecasts	

over	climatology	 for	all	 lead	 times	 (left	and	middle	panels),	with	a	slight	decrease	

(~5%)	in	IOC	with	increasing	forecast	lead	time.		BSSs	computed	for	autumn	(dotted	

lines)	 and	 winter	 (solid	 black	 lines)	 show	 similar	 patterns	 but	 with	 greater	

magnitude	 to	 that	 of	 all	 seasons,	 with	 autumn	 having	 slightly	 higher	 BSSs,	

particularly	 for	 the	 shortest	 lead	 times.	 	 The	 spring	months	 (MAM,	 dashed	 lines)	

have	 BSSs	 that	 drop	 off	 steeply	 after	 a	maximum	 skill	 at	 a	 lead	 time	 of	 18	 hours	

(valid	time	of	18	UTC)	for	all	three	post-processing	methods.		Summer	months	show	

the	least	skill	in	forecasting	VFR.		Although	BSSs	remain	positive,	skill	is	often	at	half	

of	 that	 observed	 for	 other	 seasons	 at	 similar	 times,	 particularly	 during	 short	

forecast	lead	times.		For	all	seasons,	and	through	each	season,	the	ensemble	member	

approaches	 slightly	 outperform	 the	 ensemble	 mean	 approach	 (right	 panel)	 by	

approximately	2-3%.		There	do	not	appear	to	be	any	obvious	correlations	between	

BSSs	and	observed	relative	frequencies	of	VFR.			

	 Attributes	diagrams	(Figure	18)	support	all	three	analog	forecast	approaches	

showing	skill	in	forecasting	VFR	at	0-,	12-,	and	24-hour	lead	times.		The	exception	to	

this	general	observation	is	60%	or	70%	forecast	probability	for	12-hour	lead	times	

for	all	three	methods.		It	is	unclear	why	this	consistent	deviation	in	skill	occurs.		The	

method	 utilizing	 550	 analogs	 from	 the	 ensemble	 members	 has	 nearly	 perfect	



calibration	at	24-hour	 forecast	 lead	time	and	good	resolution	at	 the	other	 forecast	

lead	 times,	 with	 less	 resolution	 when	 the	 least	 VFR	 forecasts	 are	 present.		

Interestingly,	the	ensemble	member	unique	analog	method	and	the	ensemble	mean	

tend	to	slightly	overforecast	VFR	at	0-hour	lead	times,	and	in	general,	compared	to	

the	550	analogs	from	ensemble	members	method	at	all	three	forecast	lead	times.			

	

	

5.0			Discussion	
	

	 Overall,	 the	 analog	 approach	 demonstrated	 here	 provided	 skillful	 IOC.		

Results	were	most	positive	in	areas	of	flat,	homogeneous	terrain	away	from	strong	

coastal,	convective,	and	geographic	influences.		As	might	be	expected,	IOC	generally	

decreased	with	 increasing	 forecast	 lead	time.	 	A	distinct	seasonal	cycle	 in	 IOC	was	

seen	 at	 airports	 across	 the	 United	 States	with	 greatest	 IOC	 for	 both	 IFR	 and	 VFR	

observed	 during	 winter	 months.	 	 Composite	 attributes	 diagrams	 for	 the	 Golden	

Triangle	and	CONUS	demonstrated	very	good	resolution	and	reliability	 from	these	

analog	forecasts.				

Forecasts	for	airports	located	in	the	West	and	in	Florida	tended	to	show	the	

least	 skill,	 and	 at	 times	 negative	 skill	 relative	 to	 climatology,	 as	 compared	 to	 the	

other	 Core	 30	 airports.	 	 Due	 to	 the	 coarse	 resolution	 of	 the	 available	 reforecast	

dataset	 (1o	 by	 1o	 horizontally,	 and	 surface/mandatory	 levels	 vertically),	 we	

postulate	 that	 most	 of	 these	 issues	 arise	 due	 to	 where	 the	 bounding	 latitude-

longitude	points	exist	for	these	airports	and	the	lack	of	similarity	of	these	points	and	

the	location	of	the	airport.	 	For	example,	values	for	SEA	must	be	interpolated	from	

data	 points	 located	 nearly	 in	 the	 Strait	 of	 Juan	 de	 Fuca	 as	well	 as	 in	 the	 Cascade	

Mountains	on	 the	 slopes	of	Mt.	Rainier.	 	 Likewise,	 the	model	 tends	 to	 struggle	 for	

many	airports	that	include	bounding	boxes	with	vertices	in	the	ocean	such	as	SAN,	

FLL,	 and	LAX,	 and	mountainous	 regions	 such	 as	 those	 surrounding	 LAS	 and	DEN.	

Also,	 some	 locations	 in	 the	 Southwest	 and	 Intermountain	West	 receive	 very	 little	

IFR,	 particularly	 during	 the	 warm	 season,	 making	 it	 such	 a	 rare	 event	 that	

climatology	 becomes	 extremely	 competitive,	 particularly	 considering	 the	 low	

resolution	 of	 the	 reforecast.	 	 Places	 that	 are	 more	 geographically	 homogeneous,	



such	as	CLT,	EWR,	and	ATL	perform	much	better	with	typically	higher	skill	scores	

throughout.	 Generally,	 and	 perhaps	 of	 greatest	 aviation	 significance,	 this	 post-

processing	method	 performs	with	 rather	 impressive	 skill	 for	 the	 Golden	 Triangle	

(New	York	–	Atlanta	–	Chicago)	for	IFR	and	VFR	throughout	the	year	and	for	all	lead	

times.		

As	mentioned,	the	low	vertical	resolution	also	impacts	the	skill	of	the	model	

and	 post-processing	 to	 predict	 low	 clouds	 and	 visibility.	 	 Reforecast	 grids	 are	

archived	 at	most	mandatory	 isobaric	 levels,	 but	 this	 leaves	 the	 surface	 fields	 and	

large	 gaps	 in	 the	 atmospheric	 column.	 	 Due	 to	 this	 crude	 vertical	 resolution,	 low	

cloud	layers	and	inversion	height	may	be	poorly	simulated	and	not	well	represented	

in	 the	 reforecast	 archive.	 	 Likewise,	 because	 of	 the	 coarse	 resolution	 MVFR	

conditions	are	not	be	reliably	identified	due	to	the	narrow	band	of	the	atmosphere	

that	 defines	 the	 flight	 rule	 category	 and,	 as	 such,	 was	 necessarily	 left	 out	 of	 the	

reported	 results.	 	 Increasing	 vertical	 resolution	 (of	 the	 native	model	 and	 archive)	

will	 allow	 for	 identifying	 analogs	 through	 the	 inclusion	 of	 more	 levels	 providing	

better	 identification	 of	 moist	 atmospheric.	 	 Additionally,	 increasing	 vertical	

resolution	would	allow	for	the	integration	of	 fog	and	turbulence	models	to	further	

aid	in	the	forecasting	of	surface	visibility	and	low	clouds.		This	would	be	particularly	

helpful	 for	 air	 traffic	 along	 the	West	 Coast	 and	 the	 Gulf	 of	Mexico	where	 fog	 is	 a	

major	 impediment.	 	 Considering	 the	 low	 resolution	 available	 for	 constructing	

historical	reforecast	analogs	and	the	results	presented	here,	a	mesoscale	reforecast	

system	with	higher-resolution	reforecast	archives	would	likely	improve	results	and	

be	a	powerful	post-processing	resource	for	aviation	forecasting.	

	 While	 this	 study	 only	 takes	 a	 cursory	 look	 at	 forecasts	 considering	 all	

ensemble	members	at	a	single	airport	(ATL),	the	individual	member	approach	may	

provide	a	slight	 improvement	over	utilizing	 just	 the	ensemble	mean.	This	 is	based	

on	 the	 improvement	 in	 VFR	 predictions	 annually	 and	 seasonally,	 and	 IFR	

predictions	 when	 considered	 annually.	 	 Given	 this	 is	 only	 one	 airport,	 more	

extensive	 research	would	need	 to	be	undertaken	 to	determine	whether	 individual	

members	or	the	ensemble	mean	is	superior.			

	



6.0			Conclusions	
	

	 This	 research	 makes	 an	 initial	 foray	 into	 analog-type	 post-processing	 of	

NOAA's	 2nd-Generation	 Global	 Ensemble	 Forecast	 System	 Reforecast	 for	 aviation	

applications.	 	 Results	 show	 this	 post-processing	method	 yields	 skillful	 predictions	

discerning	IFR	and	VFR	flight	conditions	out	to	30-hours	for	the	majority	of	Core	30	

airports.	 	This	is	particularly	true	for	those	airports	in	the	central	and	eastern	U.S.,	

which	happen	to	be	most	critical	to	the	nation’s	air	traffic	flow	management.			

The	 overall	 results	 are	 encouraging	 and	 suggest	 reforecasting	 is	 a	 useful	

approach	for	aviation	post-processing.	Based	on	this	study,	the	reforecast	dataset	is	

suitable	 for	aviation	decision	support	services,	and	underscores	 the	 importance	of	

ensemble	and	reforecast	post-processing	as	a	continuing	goal	of	the	NGGPS.			

Extrapolating	 these	 results	 beyond	 this	 initial	 study	 suggests	 that	 higher	

resolution	 (i.e.	 mesoscale	 or	 convection	 allowing)	 models	 and	 accompanying	

reforecast	 systems	 would	 be	 of	 great	 value	 to	 aviation	 weather	 post-processing.		

Further	 research	 should	 focus	 on	 systems	 with	 higher	 vertical	 and	 horizontal	

resolution,	optimal	methods	of	analog	matching,	improved	statistical	weighting	and	

calibrating	 of	 close	 analogs,	 ensemble	 reforecast	 membership	 size,	 and	 utilizing	

some	 or	 all	 of	 the	members	 vs.	 the	 ensemble	mean.	 	 Extensions	 of	 the	 approach	

could	 also	 include	 additional	 aviation	 variables	 such	 as	 low-level	 wind	 shear,	

mountain	 waves,	 icing,	 and	 turbulence.	 	 In	 this	 case,	 skill	 was	 based	 on	 sample	

climatology,	but	more	competitive	skill	metrics	such	as	those	based	on	actual	TAFS	

and	existing	statistical	guidance	would	be	enlightening.		Finally,	extracting	the	most	

likely	 deterministic	 forecast	 to	 accompany	 the	 probabilistic	 forecast	 would	 be	 a	

necessary	extension	to	satisfy	the	aviation	community.	
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Region Callsign Airport Name Region Callsign Airport Name 

South 

ATL Hartsfield-Jackson Atlanta Intl  

Midwest 

DTW Detroit Metropolitan Wayne County  
CLT Charlotte Douglas Intl  MDW Chicago Midway  
DFW Dallas/Fort Worth Intl  MSP Minneapolis/St. Paul Intl  
FLL Fort Lauderdale/Hollywood Intl  ORD Chicago O’Hare Intl  
IAH George Bush Houston Intercontinental  

New 
England 

BOS Boston Logan Intl  
MCO Orlando Intl  BWI Baltimore/Washington Intl  
MEM Memphis Intl  DCA Ronald Reagan Washington National  
MIA Miami Intl  EWR Newark Liberty Intl  
TPA Tampa Intl  JFK New York John F. Kennedy Intl  

West 

DEN Denver Intl  IAD Washington Dulles Intl  
LAS Las Vegas McCarran Intl  LGA New York LaGuardia  
LAX Los Angeles Intl PHL Philadelphia Intl  
PHX Phoenix Sky Harbor Intl  
SAN San Diego Intl  
SEA Seattle/Tacoma Intl  
SFO San Francisco Intl  
SLC Salt Lake City Intl  

Table 1:  The Core 30 airports across CONUS by region. Golden Triangle airports are highlighted in gray. 
 



Flight Condition Ceiling (feet) Visibility (SM) 

IFR < 1000 < 3 

MVFR ≥ 1000 & ≤ 3000 ≥ 3 & ≤ 5 

VFR > 3000 > 5 

Table 2:  Flight rule condition definitions. Conditions are defined 
on an and/or basis with the lowest visibility or ceiling defining the 
current flight rule conditions. 
 
 



Figure 1:  Brier skill scores computed for all seasons for IFR at the Core 30 airports across CONUS at 
each forecast lead time.  Perimeters of the circles denote positive (red) or negative (blue) skill.  Shading 
within each circle denotes the skill score magnitude. 
 



Figure 2:  Brier skill scores for IFR for all seasons versus forecast lead time by region:  
West (upper left), New England (upper right), Midwest (lower left), South (lower right). 
 
 



Figure 3:  As in Figure 2, but only considering winter months (DJF). 
 
 
 



Figure 4:  As in Figure 2, but only considering spring months (MAM). 
 
 
 
 



Figure 5:  As in Figure 2, but only considering summer months (JJA). 
 
 
 
 



Figure 6:  As in Figure 2, but only considering autumn months (SON). 
 
 
 
 



Figure 7:  As in Figure 1, but for VFR 
 



Figure 8:  Brier skill scores for VFR for all seasons versus forecast lead time by region:  
West (upper left), New England (upper right), Midwest (lower left), South (lower right). 
 
 



Figure 9:  As in Figure 8, but only considering winter months (DJF). 
 
 
 



Figure 10:  As in Figure 8, but only considering spring months (MAM). 
 
 
 



Figure 11:  As in Figure 8, but only considering summer months (JJA). 
 
 
 



Figure 12:  As in Figure 8, but only considering autumn months (SON). 
 
 
 



Figure 13:  Attributes diagrams from 
compositing forecasts for the five airports 
in the Golden Triangle for 0-, 12-, and 24-
hour lead times (top, middle, and bottom, 
respectively) for IFR (left column) and VFR 
(right column).  Observed relative 
frequency is plotted in the black line with 
white filled circles denoting the center of 
the forecast probability bins.  Perfect 
forecast reliability (1:1) is plotted as a 
solid gray line for reference.  
Climatological frequency of conditions are 
plotted as the horizontal dashed line.  The 
inset bar graph displays the number of 
observations in each forecast probability 
bin. 
 
 
 
 



Figure 14:  As in Figure 13,  

but attributes diagrams from 

compositing the 29 CONUS Core 

30 airports for 0- (top), 12- 

(middle), and 24-hour (bottom) 

lead times for IFR (left column) 

and VFR (right column). 

 

 

 

 



Figure 15:  IFR Brier skill scores (BSSs) (upper panels) and observed relative frequency (lower panels) 

for Hartsfield-Jackson Atlanta International Airport (ATL) versus forecast lead time by season:  

winter (solid black), spring (dashed), summer (dot-dash), autumn (dotted), and all seasons (solid gray).  

BSSs are computed by looking at all 550 analog forecasts from ensemble members (upper left panel), 

and a subset containing the unique analog dates (middle panel).  BSSs for the ensemble mean (right 

panel) are the same as shown in previous figures, but aggregated here for easy reference. 

 

 

 



Figure 16:  As in Figure 15, but for VFR. 
 
 



Figure 17:  As in Figure 13, but 
attributes diagrams for IFR at 
ATL considering forecasts from 
the ensemble mean (left 
column), ensemble member 550 
analogs (middle column), or 
ensemble member unique 
analogs (right column) for 0- 
(top), 12- (middle), or 24-hour 
(bottom) lead times. 
 
 
 
 



Figure 18:  As in Figure 13, but 
attributes diagrams for VFR at 
ATL considering forecasts from 
the ensemble mean (left 
column), ensemble member 550 
analogs (middle column), or 
ensemble member unique 
analogs (right column) for 0- 
(top), 12- (middle), or 24-hour 
(bottom) lead times. 
 
 
 
 


