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1.  INTRODUCTION 

 
    In a recent study (Fisk, 2015), the existence and 
character of idealized relative statistical anomaly 
patterns or “modes” in July-June total precipitation were 
investigated for the seven NCDC California Climate 
Divisions, utilizing the 1895-96 thru 2013-14 period of 
record, K-means clustering analysis, and calculations of 
Bayesian probabilities of the patterns' likelihoods, given 
the particular ENSO phase (“La Nina”, “Neutral”, and “El 
Nino”) in place.  Results resolved six modes, some of 
which for the two southernmost divisions displayed 
noticeable contrasts in relative anomaly character 
compared to those of the other five.  The ENSO phases 
also showed different affinities for different clusters. 
Extending the scope to include the Pacific states 
collectively, Oregon and Washington as well as 
California, and refining the ENSO phase designations 
by adding the “Strong La Nina”, “Weak El Nino”, 
“Moderate El Nino”, and “Strong El Nino” subcategories, 
the following study repeats the objective of the previous 
study, incorporating in the process an additional 
season's data (2014-15).   
   Twenty-six total climate divisions comprise the three 
States and to parse down the number of divisions and at 
the same time keep a near-coastal focus, the selection 
is reduced to include those closest to the Pacific (and in 
the case of Oregon and Washington, essentially those 
west of the Cascade Mountains).  This leaves twelve 
divisions, three in California, four in Oregon, and five in 
Washington.  The K-Means Clustering methodology is 
integrated with the V-Fold Cross Validation Algorithm, 
an iterative training sample type procedure that 
optimizes the number of clusters created, depending on 
the choice of statistical distance metric (Euclidean, 
Squared Euclidean, etc.), percent improvement cutoff 
threshold (e.g., 5 percent), and other settings.  In this 
study the K-means approach utilizes the Squared 
Euclidean metric combined with the 5 percent distance 
improvement cutoff threshold; also the precipitation data 
are normalized in advance, by division.  Seven clusters 
are resolved.  
   Then, through referencing and adaptation of bi-
monthly ranked statistics from the MEI ENSO Index 
Data base back to 1895-96, a Bayesian statistical 
analysis is done which addresses the following 
questions: given the presence of a “Strong El Nino”, 
“Moderate El Nino”, “Weak El Nino”, “Neutral”, “Ordinary 
La Nina” , or “Strong La Nina” episode, what are 
conditional probabilities that each of the seven idealized 
anomaly patterns would be expressed for a given July to 
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June rain season.  Results are described and 
interpreted, including both descriptions and discussions 
of the patterns along with their Bayesian probabilities. 
 
2. THE K-MEANS AND V-FOLD CROSS  
VALIDATION METHODOLOGIES  

 
   The original K-means methodology was introduced by 
Hartigan (1975), and the basic methodology consists of 
assigning observations to a designated number of K 
clusters such that the multivariate means across the 
clusters are as different as possible. The differences 
can be measured in terms of Euclidean, Squared 
Euclidean, City-Block, and Chebychev statistical 
distances (Nisbet, et. al., 2009).  
   Applied to K-Means, the V-fold cross-validation 
scheme involves dividing the overall data sample into V 
“folds”, or randomly selected subsamples. K-means 
analyses are then successively applied to the 
observations belonging to the V-1 folds (training  
sample), and the results of the analyses are applied to 
the sample V that was not used in estimating the 
parameters (the testing sample) to assess the predictive 
validity or the average distances of the training sample 
arrays from their cluster center centroids.  The 
procedure is repeated for cluster sizes K+1. K+2, …, 
etc., until the incremental improvement in the average 
distances is less than some threshold, at which time the 
“optimal” cluster size is considered attained (NIsbet, et. 
al., 2009).  
   The STATISTICA Data Miner Clustering module was 
utilized to employ this technique.  Preliminary to the 
analyses, the Climate Division data were normalized, an 
internal automatic software feature, to reduce them to a 
common scale (between 0.0 and 1.0) and lessen the 
influence of outliers.  Cluster results would be presented 
in pre-normalized data form.  
   Since the percent improvement threshold default 
setting (5 percent) can be changed, potentially resulting 
in a different “best” cluster size, an alternative graphical 
tool is available that can provide a different selection 
option.  This tool, the Scree Plot, traces the actual 
(usually decreasing) mean training sample statistical 
distances over a range of increasing K’s. Inflection 
points on the Scree Plot can be interpreted as “natural” 
cutoff points, the “best” cluster size corresponding to the 
inflection point’s Kth position on the graph.  The percent 
improvement cutoff K may differ (the iterations having 
stopped at K+1), so, alternatively, if one opts to choose 
the inflection point as the “right” K and it is different than 
the percent improvement threshold K, the program can 
be rerun, “forcing” the “optimal” cluster size and 
accompanying analysis and information to correspond 
to that at K, and K only.  If one is interested in a more 
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exhaustive analysis, the forcing could be done at a 
Scree K-value that exhibits essentially zero change in 
mean training sample statistical distance from the 
preceding K-1 level. At even higher K levels, of course, 
the statistical distance curve might trend back upward, 
reflecting over-fitting.  
   In this study, the 5 percent default distance 
improvement cutoff threshold was utilized along the 
Squared Euclidean distance metric (default: Euclidean), 
together with Scree Plot inspection. 

 
3.  BAYESIAN ANALYSIS 
     
  From Wikipedia, Bayesian inference is a method of 

which Bayes’ rule is used to update the probability 
estimate for a hypothesis as additional evidence is 
acquired.  In the context of this study, the initial 
hypothesis would be a probabilistic belief, or “Prior 
Probability”, that a given anomaly pattern (cluster) would 
occur unconditionally (historical percent frequency of the 
pattern), updated by a processing of evidence that 
relates the occurrence of the pattern to ENSO phase. 
The latter could be referred to as “accounting for 
evidence” and the result, or “impact”, multiplied by the 
“Prior Probability” would produce a “Posterior 
Probability” that incorporates this new conditional 
information (the ENSO phase) into a revised 
probabilistic belief that the given pattern will occur.  A 
desirable outcome would be a marked contrast in 
magnitudes between the Posterior and Prior 
probabilities which would indicate that knowledge about 
the conditional variable “matters”.  The actual Bayesian 
expression will appear in a later section in which a case 
example is demonstrated on the Climate Division 
precipitation data.           
 
4. THE DATA  

 

   The raw data were downloaded via an NCDC online 
link which has the complete history for the July 1895 to 
June 2015 period of interest.  Figures 1 through 3 are 
maps of the California, Oregon, and Washington 
Climate Divisions, respectively, included in this study. 

 For California (Figure 1), the three divisions are 1). 
“South Coast”, 2.) “Central Coast”, and 3.)  “North 
Coast”.   For Oregon (Figure 2), they are 1.) “Coastal 
Area” , 2.) “Southwestern Valleys”,  3.) “Williamette 
Valley”, and 4.) “Northern Cascades”.  Finally, for 
Washington (Figure 3) they are 1.) “West Olympic 
Coastal”, 2.) “East Olympic  Cascade Foothills”, 3.) 
“Puget Sound Lowlands”,  4.) “Cascade Mountains 
West”, and 5.) “NE Olympic San Juan”.  For 
presentation purposes, all of these 12 titles, by 
necessity, appear in abbreviated form.    

    Also, Figure 4 is a bar chart of the 120-year mean 
July-June precipitation figures, by division, and Figure 5 
a similar type bar chart of the standard deviation 
statistics, by division.  From Figure 4, there is a wide 
range of mean statistics, from 108.66” in the 
Washington “”West Olympic Coastal” Division, to 17.38” 
in the California “South Coast” Division. The standard 
deviation statistics in Figure 3 range from 16.21” for the 

Washington “West Olympic Coastal” to 4.01” for the 
Washington “NE Olympic San Juan” Division.   

   With such a wide division-to-division range in overall 
mean precipitation and variability across the State, it 
makes sense from an interpretation standpoint to 
express the individual cluster results, division-by-
division, in terms of relative or standardized deviations 
from the overall averages in Figure 4, based on the 
overall standard deviation statistics depicted in Figure 5.       

 

 

 

 

 

 

 

 

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Figure 1 – Map of California Climate Divisions included 
in this study – from NCDC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Map of Oregon Climate Divisions included in 
this study – from NCDC. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Map of Washington Climate Divisions 
included in this study – from NCDC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Mean Seasonal (July-June) Precipitation (In.)  

For 12 NCDC Near-Coastal California, Oregon, and 
Washington Climate Divisions (1895-96 thru 2014-15 
Period of Record  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Seasonal (July-June) Precipitation Series’  

Standard Deviations (In.) – 12 NCDC Near-Coastal 
California, Oregon, and Washington Climate Divisions 
(1895-96 thru 2014-15 Period of Record)  

 

   It will be noted that in both charts, five of labels below 
the horizontal axis are shaded red; these are 
interpretative aids, identifying  those (elongated and 
narrow) divisions that border directly on the Pacific 
Ocean,  All three of the California divisions fit this 
category along with one each for Oregon/Washington.    
 
5.  RESULTS  
 

     The K-Means/V-Fold algorithm produced seven 
clusters, ranging in percent frequency from 23.3% to 
4.2%.   

 
5.1. – Scree Plot 

 

    Figure 6 is a Scree Plot of the iterative results. The 
“Best K”, determined by the 5% default improvement 
cutoff level is at K=7; this is somewhat arbitrary as the 
inflection point between K=7 and K=8 is not a 
particularly dramatic one, a somewhat lesser percent 
improvement figure would have likely allowed the 
process to stop at K=8.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 – Scree Plot of K-Means/V-Fold Cross 
Validation Algorithm Analysis of NCDC Near-Coastal 
California, Oregon, and Washington Climate Divisions  

Seasonal (July-June Total) Precipitation Anomalies.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



5.2. – Standardized Mean Anomaly Charts for the 
Individual Patterns. 

 

     Figures 7 thru 13 present the division-by-division   

 standardized mean anomalies for each of the seven 

 patterns, in descending order of importance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 7 – Standardized Mean Division-by-Division 
    Anomalies for the “California & Oregon Dry, Wash- 
    ington Wet” Pattern - Ranking Mode #1. 

 

   Figure 7 shows the most frequent mode (23.3% 
incidence), dubbed the “California & Oregon Dry, 
Washington Wet” one.  A generalized dry to wet trend, 
north to south, is evident between States.  For Coastal 
California, the standardized anomalies are consistently 
and significantly negative (from -0.72 z  to  -0.81 z) for 
all three divisions.  Utilizing the divisional standard 
deviation statistics (depicted in Figure 5), these 
correspond to absolute July-June precipitation mean 
deficits of 5.4” and 5.8” for the South and Central 
Coasts, respectively, and 9.1” for the North Coast.  For 
Oregon, the anomalies are more modestly negative, and 
in a “wet” shift,  all five divisions for Washington exhibit 
positive departures, between + 0.30 z and +0.44 z, 
corresponding, for example, to excesses for the 
naturally rainy “Wa_Coast” and “Cascade_Mts_W” 
regions of 4.8” and 5.3”, respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  Figure 8 – Standardized Mean Division-by-Division 
  Anomalies for the “Wet South & Central California, Dry 
Oregon & Washington “ Pattern –Ranking  Mode #2. 
 

    Ranking second is the “Wet South & Central 
California, Dry Oregon & Washington“ pattern (20.8% 
incidence – see Figure 8).  This displays pronounced 
negative mean anomalies for Oregon and Washington, 
the “Puget_Sound”, Washington division, for example, 
showing a marked -1.27 z mean departure, denoting a 
7.9” deficit.   In striking contrast, however, those of the 
California South Coast are positive at +0.47 z 
(equivalent to a 3.3” excess), the Central Coast’s 
modestly so (+0.26 z), and the North Coast modestly 
negative ( -0.23 z).  Such dichotomies between 
California and Oregon/Washington will be seen in other 
charts to follow, along with occasional inter-California 
ones between the South Coast/Central Coasts and the 
North Coast. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9 – Standardized Mean Division-by-Division 
Anomalies for the “California & Oregon Wet, 
Washington Near Average “ Anomaly Pattern –  
Ranking Mode # 3. 
 

   Third most frequent is the “California & Oregon Wet, 
Washington Near Average” Pattern (20.0% incidence - 
see Figure 9).  In this case, California/Oregon contrast 
with Washington, the former two states exhibiting a mix 
of modestly to significantly wet seasons, compared to 
essentially near average conditions for all of 
Washington’s five divisions.  The California North 
Coast’s mean departure statistic is slightly greater than 
+0.54 z, translated into a 6.8” excess.   

   The highest three ranking modes discussed so far  
make up nearly two-thirds or 64.1 % of the total cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10 – Standardized Mean Division-by-Division 
Anomalies for the “Dry South & Central California, Wet 
Oregon & Washington Pattern – Ranking Mode # 4. 

 

   In fourth place is the “Dry South & Central California, 
Wet Oregon & Washington” Mode (14.2 % incidence – 
see Figure 10).  This is essentially a mirror image 
(oppositely signed anomaly configurations) of Figure 8, 
Oregon and Washington all very wet, slightly more so in 
absolute anomaly terms than they were dry in Figure 8  
In contrary fashion once again, the California South and 
Central Coast divisions show negative departures (the 
former  -0.48 z, the latter -0.31 z); the North Coast 
shows a positive +0.39 z figure, but this is significantly 
less than those of Oregon/Washington, which range 
uniformly between +1.1 z and +1.2 z. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 11 – Standardized Mean Division-by-Division 
Anomalies for the “Very Dry Throughout, Sans Calif 
South Coast”  Relative Anomalies” Pattern – Ranking 
Mode # 5. 

 

   Ranking fifth is the “Very Dry Throughout, Sans Calif 
South Coast” Pattern” (9.2 % incidence – see Figure 
11). This displays a decidedly negative series of 
departures, especially for Oregon and Washington, and 
to a somewhat lesser extent, but still at significant 
levels, the California North and Central Coasts. The 
Oregon and Washington deviations range from -1.58 z 
to -1.85 z.  

   While California’s departures are also negative, once 
more the relative character disparity with Oregon’s and 

Washington’s gets greater as one goes farther south. 
The North Coast’s anomaly is roughly comparable 

 (-1.40 z), the Central Coast’s  -0.83 z, but the South 
Coast’s is just -0.29 z.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12 – Standardized Mean Division-by-Division 
Anomalies for the “California & Oregon Very Wet, 
Washington Near Average” Pattern – Ranking Mode #6. 
 

   Sixth in relative importance is the “California & Oregon 
Very Wet, Washington Near Average” Pattern (8.3% 
incidence – See Figure 12).  This configuration is not 
unlike Figure 7’s, with essentially near average 
departures for Washington, contrasted with wet ones for 
California and Oregon, except in this case, California’s 
are very wet, those of the South Coast and Central 
Coast reaching +2.00 z and +2.01 z, respectively; the 
North Coast’s is +1.59 z.  Those of Oregon are at lesser 
but still quite wet-indicative levels (between +0.71 z to  

+1.05 z. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 13 - Standardized Mean Division-by-Division 
Anomalies for the “Oregon & Washington Exceptionally 
Wet, California South Coast Dry Pattern – Ranking 
Mode #7. 
 
   Ranking seventh (and last) is the “Oregon & 
Washington Exceptionally Wet, California South Coast 
Dry” pattern (Incidence: 4.2 % - See Figure 13), 
comprising only 5 cases.  This is not unlike Figure 8’s 
configuration, except for the fact that the Oregon and 
Washington mean anomalies are amplified to 

 

 

 

 



exceptionally high levels, most at +2.00 z or higher, the 
“WILLMETE” division (relating to the Willamette Valley) 
reaching +2.39 z.  Once more, there are disparities 
relative to California, especially pertaining to the Central 
and South Coast – the latter showing a significant 
- 0.45 z departure, indicative of a mean 3.2” deficit.  In 
contrast, the Oregon “NCASCADE” (Northern 
Cascades) division exhibits a greater than 30” excess. 

   Reviewing the seven patterns configurations 
collectively, and comparing them across States, the 
previously described non-conformities of the California 
mean relative departures relative to those of Oregon 
and Washington are present in four of the seven, 
constituting 71.8 % of the total cases.  Also, as 
previously described, these dissimilarities get more 
pronounced as one moves from the California North 
Coast to the South Coast.  

 

       5.3. – Pattern Probabilities Conditioned on El Nino, 
Neutral, or LaNina occurrences – Bayesian 
Determinations 

 

   While the percent frequencies of the above seven 
patterns may be considered as probabilities that they 
may occur individually for a given July-June rain year, 
there are other climatic indicators that should provide 
additional, more refined probabilistic information on 
occurrence likelihoods.  ENSO phase (“El Nino, 
“Neutral”, or” La Nina”) is one indicator known to 
influence West Coast rainfall patterns, so the next step 
is to investigate the possible modifying influences of 
these three episode types on the “baseline” Prior 
probabilities above of the six patterns.  This would be a 
conditional probability exercise, and the method of 
choice, already introduced, would be Bayesian Analysis.   

   First, the 120 seasons are assigned ENSO episode 
classification.  To begin this task the online MEI 
(“Multivariate ENSO index”) web site is referenced 
(Wolter, 2015).  The most current data base consists of 
standardized index values encompassing two-month 
running periods, going back to Dec 1949/Jan 1950.  A 
separate legacy data base has index values covering 
Dec 1870/Jan 1871 through Nov/Dec 2005.  As the 
NCDC Climate Divisions’ history goes back to 1895, 
both the legacy and current versions of Wolter’s data 
base are utilized.   

   A strategy is adopted  to merge the two, joining the 
legacy data set up through 1949 ( the1950-2005 portion 
excluded) with the 1950-present data set, the combined 
data sets’ two-month running periods then re-
standardized as a single unit.  Next, the re-standardized 
data set is restructured into a July-June format (a 
“season” covering the JunJul to MayJun periods).  
Following an approach that Wolter uses, each of the 
two-month moving periods are assigned a rank; the 
individual ranks then added and averaged to create a 
seasonal average rank (based on the 1871-2014 
period).   La Nina episodes, for example, which typically 
display negative indices on a period to period basis, 
have “lower” numerical ranks (the strongest La Nina 
with a rank: 1). 

   Since West-Coast precipitation tends to decrease 
markedly late in the season and El Nino episodes, in 
particular, have a tendency also to decay in strength in 
Spring,  it was of preliminary interest  to evaluate the 
overall relationships of the individual two-month ranks 
with the overall average ranks (i.e., determine how 
“representative” they were relative to the overall 
picture).  

    Correlation coefficient calculations revealed that all 
the individual periods had correlations greater than 
+.910 except JunJul (+.834), AprMay (+.786), and 
MayJun  (+.604), so in another arbitrary step, the 
AprMay and MayJun variables were dropped from 
further consideration.  The average overall ranks were 
then recalculated using the remaining ten periods. 

    Next, data for the seasons 1871-72 to 1894-95 were 
dropped, a new data set created including 1895-96 to 
2014-15 statistics only.  The seasonal ranking averages 
of these were then sorted with following ENSO 
classification scheme applied: Rankings 1 to 12: “Strong 
La Nina”, rankings 13-40: “Other La Nina”, rankings 41-
80:  “Neutral”, rankings 81-94: “Weak El Nino”:, rankings 
95-108 : “ Moderate El Nino” and finally, rankings 109-
120: “Strong El Nino”.  Thus, there would be 12 “Strong” 
La Ninas,  28 “Other” La Ninas, 40 “Neutrals”, 14 
“Weak” El Ninos, 14 “Moderate” El Ninos, and 12 
“Strong” El Ninos.   

   The seasons designated as “Strong” El Ninos, for 
example, in descending order of mean rank magnitude 
were 1.) 1997-98, 2.) 1982-83, 3.) 1930-31, 4.) 1972-73, 
5.) 1941-42, 6.) 1991-92, 7.) 1902-03, 8.) 1896-97, 9.) 
1918-19, 10.) 1940-41, 11.) 1957-58, and 12.) 1965-66.   

   Next, the Bayesian conditional probabilities were 
calculated.  Since there were seven patterns and six 
different ENSO phases, there would be 42 separate 
calculations.  Figure 14 shows the Bayesian theorem 
along with the steps of a sample calculation, that for the 
conditional probability of Pattern #2 (“California & 
Oregon Very Wet, Washington Average” – see Figure 
12) as associated with an imminent “Strong” El Nino 
episode. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

         

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 – Bayes Theorem (from Wikipedia) and a 

Sample Calculation of the Conditional Probability of the 
“Wet South & Central California, Dry Oregon & 
Washington Pattern (# 2) being realized, given an 
impending or ongoing “Strong” El Nino. 

 

   From Figure 12, the top expression shows the general 
Bayes Theorem, that immediately below it the 
expression adapted to the variables of the sample 
exercise.  In the numerator on the right side of the 
equation, “P(A)” is the Prior Probability of the “Wet 
South & Central California, Dry Oregon & Washington” 
Pattern, simply the original proportion of the 120 
seasons that were so classified by the K-Means/V-Fold 
algorithm (25/120 or .208, or 20.8%). P(B|A) is the 
proportion of the pattern’s cases that were associated 
with Strong El Nino episodes (in this case, 4/25 or .160),  
P(A) and P(B|A) are then multiplied together, yielding 
.033, this result also copied into the denominator, to be 
added to the product of the proportional incidence of 
Strong El Ninos in the other six patterns collectively 
(8/95 or .084 times the converse of the Prior Probability 
(.792), yielding +.067.  The final quotient 
(.033/(.033+.067) or 33.3% is the Posterior Probabilty, 
P(A|B): the likelihood that the “Wet South & Central 
California, Dry Oregon & Washington” pattern will be 
ultimately be realized, given an impending Strong El 
Nino.  The Posterior Probability in this example is about 
2/3rds higher than that of the Prior, indicating that a 
Strong El Nino episode does boost the odds noticeably 
that this pattern will be expressed for a July-June rain 
season on the West Coast             

   Table 1 lists the Posterior Probability results for all the 
42 combinations of 6 ENSO types (columns) and 7 
Patterns (rows).  Posteriors of particular interest are 
shaded in red.       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Table 1 – Posterior Probability Results for all 
combinations of ENSO Type vs. Pattern 

 

   To interpret, for example, the “Strong El Nino” 
Posterior Probability column (third from the left), reading 
down, lists the conditional probabilities that each of the 
seven patterns will be realized, given a Strong El Nino 
episode.  The 33.3% figure, shaded red for the “Wet 
South & Central California, Dry Oregon & Washington”   
pattern (shown in Figure 8 and having already served as 
the Bayesian computation example above) is the pattern 
most likely to happen of the seven.  As already 
discussed, the 33.3 % figure is significantly higher than 
the pattern’s 20.8% Prior shown in Column 9. 
Interestingly, the Posterior shown for this pattern relative 
to a “Moderate” El Nino is an even higher 42.9 %, more 
than double the Prior.  Both Strong and Moderate El 
Nino’s thus seem to prefer this “Wet South & Central 
California, Dry Oregon & Washington” configuration.  
They also prefer as a pair the “California and Oregon 
Very Wet, Washington Near Average” pattern (Figure 
12), the posteriors (25.0% and 21.4%, respectively) in 
this case, far higher than the Prior (8.3 %).  

   In contrast, the most favored pattern for “Strong La 
Ninas” (33.3% Posterior Probability) is the “Dry South 
and Central California, Wet Oregon & Washington” 
pattern, shown in Figure 10; this is markedly higher than 
the Prior (14.2%).   

   Also curiously, the “Very Dry Throughout, Sans Calif 
South Coast” pattern (Figure 11), seems to be 
preferentially associated with Weak El Nino’s (the 28.6 
% Posterior much higher than the Prior, 9.2%).    

  There are also a number of other interesting Prior vs. 
Posterior contrasts, so, in conclusion, conditioning the 
occurrence probabilities of the seven patterns on ENSO 
phases did provide more refined insights on their 
likelihoods. The range of their Priors was 4.2% to 
23.3%, that for the Posteriors 0.0% to 42.7%.           

 
6.  SUMMARY 

   Utilizing the clustering tool K-Means, integrated with 
the V-fold cross validation algorithm, the existence and 
character of seasonal (July-June total) precipitation 
modes were explored, collectively, for the seven NCDC 
California climate divisions, accessing the 1895-96 to 

 
 



2013-14 period of record.  Inputs were normalized, 
areal-averaged total precipitation statistics season-by-
season, and division-by division. 
   Results resolved seven clusters (also “patterns” or 
“modes”), characterizing a variety of anomaly 
configurations across the three States.  Individual 
pattern frequencies (“Prior probabilities) ranged from 
4.2% to 23.3%.  Then, using Bayesian statistical 
methodology, conditional probability estimates 
(Posterior probabilities) were made of the occurrence 
likelihoods of the seven patterns, given Strong El Nino, 
Moderate El Nino, Weak El Nino, Neutral, Other La 
Nina, or Strong La Nina episodes imminent or already in 
place.  In many of the 42 Posterior Probability 
calculations, the Posterior magnitudes differed markedly 
from the Priors, indicative that El Nino type was a useful 
predictive indicator. These figures ranged from 0.0% to 
42.7%. 
   A combined Clustering/Bayesian analysis of this kind 
might prove similarly useful in other climatological-
related applications. 
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