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1.  INTRODUCTION 

 

Our understanding of and ability to forecast 

tornadoes has improved markedly (Brooks 2004) over 

the past several decades with the deployment of new 

technology (e.g., Doppler radar), as well as the 

development of improved conceptual models for 

tornadoes and severe storms (e.g., Markowski and 

Richardson 2014, Davies-Jones 2015). Despite these 

advances, there is considerable room for improvement 

in warning verification statistics: over a period of interest 

encompassing Jan 01 2003 through June 30 2013, the 

probability of detection (POD; the percentage of 

tornadoes for which a warning was issued ahead of 

time) was 68%, and the false-alarm ratio (FAR; the 

percentage of tornado warnings for which no confirming 

report was ever received) was 77%. 

Tornado climatologies often focus exclusively on 

tornadoes originating from traditional right-moving 

supercells (e.g., Alexander 2010, Rasmussen and 

Blanchard 1998, Rasmussen 2003), which are 

responsible for producing over 95% of all tornadoes 

rated EF3+ (Smith et al. 2012), but are responsible for 

only about three-quarters of all tornadoes reported 

during the aforementioned time period. Since many non-

supercellular storm modes have poorer tornado warning 

statistics than traditional right-moving supercells, we 

take a holistic look at the entire spectrum of tornadic 

storms, which includes storm modes such as quasi-

linear convective systems and more disorganized 

clusters. 

We make use of a large dataset consisting of 

12,090 tornado reports and 40,357 tornado warnings 

issued over the period of interest, the associated 

warning verification information, model mesoanalysis 

data as proxies for the near-storm environment, and 

manually compiled storm mode information based on 

radar observations (Smith et al. 2012). This work is a 

proof-of-concept for the use of self-organizing maps 

(SOMs) in clustering and analyzing the two-dimensional 

environments surrounding tornadic events [see 

Nowotarski and Jensen (2013) for an example of the 

application of SOMs to one-dimensional atmospheric 

soundings]. 

 

2. METHODS AND DATA 
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2.1 The Near-Storm Environmental Dataset 

 

The archived mesoanalysis data corresponding to each 

tornado event originates from the Storm Prediction 

Center (SPC) and consists of proximity sounding data 

obtained from the Rapid Update Cycle model (Benjamin 

et al. 2002) until April 2012, and thereafter originates 

from the Rapid Refresh model (RAP). Smith et al. 

(2012) have, in addition, manually classified each of 

these tornado events in terms of their parent storm 

mode based on visual inspection of the radar data; the 

two storm modes we discuss here are right-moving 

supercells (RMS) and quasi-linear convective systems 

(QLCS). The geographical distributions of these two 

storm modes are illustrated in Fig. 1. 

 
Figure 1: Geographical distribution of right-moving supercell 
(red) and QLCS (blue) tornado reports received between 
January 2003 and June 2013. 

In order to gain a baseline understanding of the 

near-storm environments that characterize these 

tornado reports and warnings, we plot their distributions 

in two parameter spaces. The first is mixed-layer 

convective available potential energy (MLCAPE) versus 

0-6 km vector shear magnitude (SHR6, the magnitude 

of the vector difference between the wind at the surface 

and the wind at 6 km); this combination of parameters 

has been shown to discriminate fairly well between 

supercellular and non-supercellular convection (Brooks 

et al. 2003). The second parameter space, mixed-layer 

lifting condensation level (MLLCL) versus 0-1 km storm-

relative helicity (SRH1), has been shown to discriminate 

fairly well between nontornadic and significantly tornadic 

(i.e., EF2+) supercells.  



Figure 2 plots the tornado reports and warnings in 

our two parameter spaces. There is no readily apparent 

“smoking gun” here: no part of the parameter space is 

very obviously being warned with no corroborating 

reports, and no part of the parameter space features 

tornadoes reported without any warnings issued; in 

short, the two distributions overlap through most of the 

parameter space. Looking at the entire set of tornado 

reports and warnings, overall the two distributions match 

well; peak report and warning densities are both 

centered near 1250 J kg-1 of MLCAPE, 25 m s-1 of 

SHR6, 800 m MLLCL heights, and 200 m2 s-2 of SRH1. 

Given that these four environmental parameters 

change according to factors such as time of day (Fig. 3), 

time of year, and geographical location, we would 

expect the distributions of tornado reports and warnings 

within these parameter spaces to shift accordingly. The 

effect of these shifts on tornado warning skill is outside 

the scope of this study, and is discussed in additional 

literature (Anderson-Frey et al. 2014, 2016).  
To help tease out any signal that may be buried 

when looking at the dataset as a whole, we can also 

create several clusters of statistically distinct near-storm 

environments through the use of self-organizing maps. 

This approach will enable us to analyze several distinct 

tornadic near-storm environments and discuss the 

warning skill of each one individually. 

 
2.2 Self-Organizing Maps 

Figure 2: Distribution of tornado events (blue) and warnings (green) for the MLCAPE--SHR6 (left) and MLLCL--SRH1 (right) 
parameter spaces. Data are smoothed using kernel density estimation, where each plot is centered on the point of highest data 
density. The innermost contour contains 25% of the data, followed by 50%, 75%, and 90% moving outward. 

Figure 3: Diurnal variation of MLCAPE and SHR6. The bold blue line is the mean value within each bin, while the thin blue lines 
represent the 25th and 75th percentiles of all reports for each hour. 



A self-organizing map (SOM; Kohonen 1982) is a 

type of artificial neural network that facilitates the 

visualization (and hence the analysis) of large datasets. 

It can be used as a clustering method, making use of 

pattern recognition to cluster statistically similar groups 

of data according to the extraction of distinct features, 

which then enables the data-mining of those groups as 

separate entities. The technique has been widely 

applied to a plethora of atmospheric and oceanic 

observations [see Liu and Weisberg (2011) for a review 

of many such applications], but has thus far been 

relatively underused in the field of tornadic near-storm 

environments, with the focus remaining solely on 

sounding data (Nowotarski and Jensen 2013) rather 

than two-dimensional storm environments.

       SOMs can receive a variety of inputs; in our case, 

the inputs consist of n × n maps of particular 

environmental parameters. The algorithm the SOM 

follows is loosely summarized as follows (for more 

information, see Vesanto et al. 2000): 

1. Create a user-specified number M of “nodes”, 

which are n × n maps of randomly generated 

parameter values. The number of nodes will 

also be the final number of clusters, and is the 

only user-specified aspect of the entire 

unsupervised learning process. 

2. The first input map is selected randomly from 

the list of input maps. This map is compared 

with each of the M nodes via point-by-point 

analysis of Euclidean distance.

3. Each node is “nudged” slightly by the input 

map; nodes that are more similar to the input 

map (i.e., those with smaller Euclidean 

distance) are more strongly nudged toward the 

input map values. Nodes that are less similar 

to the input map are not as strongly nudged. 

4. A second input map is selected randomly from 

the list of input maps. It is then compared with 

each of the new nodes point-by-point, resulting 

in the same nudging process. 

5. This process is repeated across all input maps, 

and then iterated several times until the nodes 

stabilize into M statistically distinct maps.  

6. This time, when each input map is compared 

with the nodes, it is assigned to the cluster 

corresponding to the node it most closely 

Figure 4: Self-organizing map results for 3x3 nodes of temperature anomalies. The tornado is located closest to the 
gridpoint (0,0) within each node; the plot shows the difference between the temperature value at a given gridpoint and 
the temperature value at (0,0). For example, Node 2 shows relatively cold air north of the tornado and relatively warm 
air south of the tornado. The number of events sorted into each cluster are listed above the top-left corner of each 
node. Probability of detection values for each cluster are in the top-right corner of each node. 



resembles. Each cluster can then be analyzed 

separately. 

Thus, the input for a SOM is a large number of n × 

n plots of an environmental variable, and the output is a 

much smaller number of clusters of n × n plots of that 

environmental variable, each of which is summarized by 

its statistically distinct characteristic node. 

 

2.3 Methodology 

 

To create the input for the self-organizing map, we 

make use of 480 km × 480 km grids of an environmental 

parameter at 40 km2 resolution, centered on the position 

of each tornado report. For this simple proof-of-concept 

experiment, we use plots of surface temperature 

anomaly in K (i.e., surface temperature at a given 

position minus the surface temperature at the gridpoint 

nearest the tornado report). 

The fact that users can select the number of nodes 

in a SOM is both a blessing and a curse: on the one 

hand, it can be extremely valuable to specify the 

complexity of the result, i.e., the final number of clusters. 

On the other hand, the specification process is often 

fairly arbitrary: a SOM that chooses too few nodes will 

result in the maps contained in each of those nodes 

having very similar statistics to the dataset as a whole, 

since each cluster encompasses a massive chunk of the 

dataset. A SOM that chooses too many nodes, on the 

other hand, will result in redundant nodes with 

functionally identical appearance (i.e., two nodes will 

show essentially the same map).  

Through sensitivity testing, we determined that 

selecting M = 9 nodes seemed to strike the best balance 

between capturing important features in the data and 

reducing redundancy in the final nodes. We iterated the 

SOM process 200 times (sensitivity tests did not show 

appreciable differences in the nodes with higher 

numbers of iterations) before grouping each map into its 

component cluster. 

 

3. RESULTS 

 

Figure 4 depicts the results of our proof-of-concept 

SOM. Each image is a depiction of a node created by 

the self-organizing map, which can be thought of as a 

two-dimensional temperature map that is characteristic 

of the maps contained in that cluster. There are 

considerable differences in the magnitude and 

distributions of temperature anomalies in each node, 

ranging from an extremely tight temperature gradient in 

Node 3 to a virtually nonexistent temperature gradient in 

Node 7.  

The orientation of the temperature gradient is also 

different from node to node; while Node 9 has a similar 

temperature gradient to Node 3, the orientation of the 

dividing line between relatively warm and cool air is 

more north-south than east-west oriented. 

Probability of detection values, in outlined white font 

at the upper right of each node, show that the statistics 

of these clusters differ from the 68% average POD 

nationwide. In the case of Node 3, with its strong 

temperature gradient, we see 78% POD; Node 7’s 

weaker temperature gradient results in a POD of only 

54%. This distinction could be a function of the fact that 

Node 7 contains a higher percentage of EF0 tornadoes 

than does Node 3; these marginal cases have a lower 

POD.  

A less immediately apparent difference is between 

the POD for Node 3 (78%) and Node 9 (56%); despite 

the fact that both nodes have similar temperature 

gradients, the orientation appears to make a difference 

in terms of forecast skill. Node 9 contains a 

disproportionately high percentage of tornadoes 

originating from QLCS storms, which could help account 

for the lower POD; QLCS tornadoes have an average 

POD of only 50%, versus 79% for RMS tornadoes 

(Anderson-Frey et al. 2016). 

Despite the simplicity of the proof-of-concept 

experiment (nobody in their right mind would use only 

temperature anomalies to forecast tornadoes!), the 

SOM is still able to extract meaningful information from 

the data, namely the effect of both strength and 

orientation of local temperature gradients on tornado 

forecast skill. 

 

4. FUTURE WORK 

 

A lot of work remains to be done in the wake of this 

proof-of-concept experiment. Given that we have 

access to full mesoanalyses corresponding to each 

tornado report, we have barely scratched the surface of 

these data. Similar analyses are underway for 

environmental parameters of more immediate tornadic 

relevance, such as MLCAPE, SHR6, MLLCL, SRH1, 

surface dewpoint temperature, and even composite 

indices such as the Significant Tornado Parameter and 

the Supercell Composite Parameter.  

We will also be able to delve more deeply into the 

statistics associated with each of the SOM-created 

clusters: what percentage of this cluster occurs at night, 

and how does that percentage compare with other 

clusters? What percentage of the events in this cluster 

were associated with fatalities or injuries? What can we 

learn about storm morphology by examining these SOM 

nodes? How does warning skill change as a function of 

the heterogeneity of the near-storm environment? 

By exploring these and other questions, we will 

investigate the effects of the tornadic environment on 

tornado warning skill, and from there we will focus our 

attention on the parts of the parameter space that would 

most benefit from enhanced forecaster training and a 

deeper conceptual understanding. 
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