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1. INTRODUCTION 
 

Inversion approach has been widely used to 
determine the improved surface flux of greenhouse 
gases (GHGs) such as CO2, using the observed 
concentration from various platforms such as aircraft and 
towers.  The components of inversion system include a 
forward transport model that represents the atmospheric 
transport processes, a backward model that determines 
the influence function for each observation site, and the 
inversion model that updates the fluxes based on the 
influence functions for all the observation sites.  The 
forward transport model can be any atmospheric model 
such as a mesoscale numerical weather prediction 
(NWP) model.  The backward model is typically an 
offline transport and dispersion model that is driven by 
the NWP model solutions and that runs backward in time 
(e.g., driver data is inputted in reverse order).  The 
inversion model computes the updated fluxes based on 
influence functions, given estimated transport error and 
observation error.  

The Weather Research and Forecasting (WRF) 
model, a state-of-the-science community-supported 
numerical weather prediction (NWP) and atmospheric 
simulation system, is used in this research as the 
forward transport model.  WRF has been used 
worldwide for both research and operational applications 
(Skamarock et al. 2008), and has been proven to have 
good skill in accurately predict/simulate atmospheric 
processes relevant to atmospheric transport and 
dispersion applications (Cintineo et al. 2014, Clark et al. 
2015, Coniglio et al. 2013, Hariprasad et al. 2014, 
Rogers et al. 2013, Lauvaux et al. 2013, Karion et al. 
2015). In addition to its advanced numerical scheme and 
model physics that are still under development and 
continuous improvements, WRF has an four dimensional 
data assimilation (FDDA) capability implemented by 
Penn State University (Deng et al. 2009) that allows 
meteorological observations to be continuously 
assimilated to allow WRF to produce the dynamic 
analysis at user-desired resolution.  

Using the WRF modeling system, Rogers et al. 
(2013) investigated effect of various FDDA strategies on 
the accuracy of the WRF-simulated mesoscale features 
over Central Valley, CA.  The goal of that research was 
to develop an optimal model configuration  to be used  in 
the operational modeling system in Bay Area Air Quality 
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Management District (BAAQMD).  The optimal model 
settings in FDDA configuration has been used in many 
recent modeling studies involving studying GHGs 
(Lauvaux et al. 2013, Karion et al. 2015), and has shown 
to be able to produce accurate model solutions 

In the Indianapolis Flux Experiment (INFLUX) 
research project, we plan to use the WRF model and its 
FDDA capability for multiple years to study the CO2 
emission and transport processes.  However, we need 
first to understand the effect of assimilating various 
meteorological data on the transport model accuracy 
and the effect on the posterior CO2 fluxes and to develop 
an optimal model configuration before we proceed with 
multi-year simulations.  In this paper, we chose a 2-
month time period in 2013 for the purpose of developing 
an optical model configuration, with focus on evaluating 
the effect of assimilating various meteorological 
observations on the WRF solutions, and its impact on 
the linearized adjoint solutions used in the CO2 inversion 
system for INFLUX. Since World Meteorological 
Organization (WMO) upper-air observations are sparse 
in time (i.e., 12 hourly apart) and space (hundreds of 
kilometers apart), additional observations from different 
platforms were introduced, including the HALO lidar wind 
observations and aircraft measurements from the 
commercial airline program, Aircraft Communications 
Addressing and Reporting System (ACARS). We 
present the inverse CO2 emissions over 2 months 
(September-October 2013) using different atmospheric 
simulations that assimilate surface stations, lidar, and 
ACARS, and assess the improvement in model 
performance based on the meteorological 
instrumentation used in our assimilation system.  The 
data types assimilated includes 1) Standard WMO 
surface and upper-air observations, available hourly for 
surface and 12-hourly for upper air;  2) Wind profiles 
from the local HALO lidar deployed by NOAA Earth 
System Research Laboratory Chemical Sciences 
Division 
(http://www.esrl.noaa.gov/csd/groups/csd3/measuremen
ts/influx/)  at Ivy Tech Community college in Indianapolis, 
available at 20-min. intervals;  3) ACARS commercial 
aircraft observations, available anywhere in space and 
time with low-level observations near the major airports. 

In order to understand the effect of assimilating 
meteorological observations from various platforms on 
the posterior urban CO2 fluxes updated by the high-
resolution inversion system, we conducted several 
sensitivity studies and compared the meteorological 
solutions from WRF and the CO2 fluxes from the 
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inversion system.  Section 2 describes the components 
of the inversion system used in this study.  Model 
configurations and experimental design are discussed in 
Section 3.  Model results and discussions are given in 
Section 4, and a summary and conclusions are given in 
Section 5. 

 
2. MODEL DESCRIPTION 

 
The Modeling system used in this research consists 

of a mesoscale atmospheric modeling component that 
handles transport and dispersion, a Lagrangian Particle 
Dispersion Model (LPDM) that is run backward and 
driven by the solutions of the atmospheric transport 
model to calculate the influence functions needed for 
inversion, and the inversion modeling system to compute 
the posterior flux given the prior fluxes and influence 
functions as well as the estimates of transport model 
errors and observation errors.  The mesoscale 
atmospheric model used here is the Weather Research 
and Forecasting (WRF) model, which is a state-of-the-
science community-supported numerical weather 
prediction (NWP) and atmospheric simulation system.  
WRF has been used worldwide for both research and 
operational applications (Skamarock et al. 2008).  
WRF’s development is supported by the broad scientific 
community, along with very active participation of 
university scientists worldwide.  WRF has a flexible, 
portable code that runs efficiently in computing 
environments ranging from massively parallel 
supercomputers and clusters to laptops.   

WRF is a non-hydrostatic, fully compressible three 
dimensional (3D) primitive equation model with a terrain-
following, hydrostatic pressure vertical coordinate, and is 
designed for simulating atmospheric phenomena across 
scales ranging from large eddies (~100 m) to mesoscale 
circulations and waves (~ 1 km to 100 km) to synoptic-
scale weather systems (~1000 km).  These applications 
include real-time NWP, model physics research, regional 
climate simulation, air-quality and hazard prediction 
modeling with addition of a chemistry module (WRF-
Chem, Grell et al. 2005), etc.   

The WRF model includes a complete suite of 
atmospheric physical processes that interact with the 
model’s dynamics and thermodynamics core.  These 
physical processes include cloud microphysics (MP), 
cumulus parameterization needed on coarser grids (dx > 
O(10km)) for representing the un-resolved atmospheric 
convection, atmospheric radiation, planetary boundary 
layer (PBL)/turbulence physics, and land surface models 
(LSMs).  Selection of model physics suite in this 
research is based on the similar modeling studies that 
were conducted previously (e.g., Lauvaux et al. 2013, 
Rogers et al. 2013).  For microphysics, this study uses 
the WRF single-moment five-class (WSM5) simple ice 
scheme (Hong et al. 2004) that assumes no mixed-
phase conditions. For cumulus parameterization, the 
Kain–Fritsch scheme (Kain and Fritsch 1990, 1993; Kain 
2004) is used on the 9-km grid (see next section for grid 
configuration).  For atmospheric radiation, the Rapid 
Radiative Transfer Model (RRTM; Mlawer et al. 1997) 
longwave (LW)/Dudhia shortwave (SW; Dudhia 1989) 

scheme is used.  For PBL turbulent processes, the 
turbulent kinetic energy (TKE)-predicting Mellor-Yamada 
Nakanishi Niino (MYNN) Level 2.5 turbulent closure 
scheme (Nakanishi and Niino 2006) is used, along with 
the MYNN surface layer scheme to preserve 
consistence.  The decision on selecting the MYNN PBL 
scheme is based on the fact that MYNN appeared to 
produce most accurate temperature and moisture 
profiles (Cintineo et al. 2014, Clark et al. 2015, ) and 
most accurate PBL depth (Coniglio et al. 2013, 
Hariprasad et al. 2014), most important to transport and 
dispersion applications .  For land surface processes, 
the Noah LSM (Chen and Dudhia 2001, Tewari et al. 
2004) is used.  The Noah LSM is a four-layer soil 
temperature and moisture scheme and includes root 
zone, evapotranspiration, soil drainage, and runoff, 
taking into account vegetation categories, monthly 
vegetation fraction, and soil texture. The scheme can 
predict soil ice and snow cover. 

The WRF modeling system also has four 
dimensional data assimilation (FDDA) capabilities that 
allow continuous assimilation of meteorological 
observations into the modeling system as the model is 
running.  For retrospective applications, FDDA can be 
used in numerical models to produce accurate dynamic 
analyses at the desired temporal and spatial resolution.  
FDDA has been widely used in studying atmospheric 
transport and dispersion processes (Deng et al. 2004, 
2006, Rogers et al. 2013, Lauvaux et al. 2013, Karion et 
al. 2015).  The version of FDDA used in this research 
was originally developed for MM5 at Penn State and was 
enhanced and implemented into WRF (Deng et al. 
2009). Further enhancements to the observation, or obs, 
nudging technique in WRF have brought more flexibility 
to control how surface observations influence 
meteorology in aloft layers. WRF users have freedom to 
choose different vertical weighting functions for the 
surface observations (Rogers et al. 2013).  Unlike 
Rogers et al. (2013) in which various FDDA strategies 
were evaluated to identify the optimal FDDA settings to 
produce the most accurate model solutions to represent 
the meteorological conditions, this research focus on 
exploring the effect of assimilating various 
meteorological observations on the model solution as 
well as on the solutions (i.e., posterior fluxes) of the 
inversion system that is driven by the WRF model 
solutions.  The optimal model configuration will be used 
for multi-year urban inversion calculations over the 
INFLUX domain. 

The LPDM (Uliasz, 1994) is used to calculate the 
influence functions.  The input to the LPDM is the hourly 
3-D wind fields simulated by the WRF model discussed 
above, except that the wind fields are inputted 
backwards in time so that areas of influence for a given 
tower observation can be estimated.  The input to LPDM 
also includes the WRF-predicted turbulent kinetic energy 
(TKE) representing the strength of the turbulent mixing 
needed for vertical diffusion calculation in the LPDM. 

In the inversion system we use the influence 
function for each tower location determined by LPDM 
calculation and the observed CO2 concentrations from 
the 12 INFLUX towers, to compute the posterior fluxes. 
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3. MODEL CONFIGURATION AND EXPERIMENTAL 
DESIGN 

 
The WRF modeling system used in this research is 

based on WRF V3.5.1, released in September 2013.  
The INFLUX WRF configuration consists three nested 
grids with 9-/3-/1-km horizontal resolutions (Fig. 1), with 
the focus on the 1-km grid.  The topographic and 
landuse database needed to initialize the WRF model 
are based on the U.S. Geological Survey (USGS) 30-
seceond terrain and 24-category landuse.  As indicated 
by the landuse distributions (Fig. 2), Indianapolis region 
is represented as an urban category, and a significant 
fraction of the 1-km grid is characterized as urban.  In 
the vertical, fifty nine (59) vertical terrain-following layers 
are used, with the center point of the lowest model layer 
located ~7 m above ground level (AGL). The thickness 
of the layers increases gradually with height, with 24 
layers below 850 hPa (~1550 m AGL).  The top of the 
model is set at 100 hPa. The initial and boundary 
conditions are based on North America Regional 
Reanalysis (NARR). 

 
Figure 1. WRF grid configuration, showing 9-/3-/1-km resolution 
grids 

 
Figure 2. WRF landuse map on the 1-km resolution grid.  
Locations of INFLUX site 3 and 10 are also shown, and ‘P’ 
indicates the location of the Harding street power plant 

 

WRF-Chem system was configured to run for a two-
month period (Sept.-Oct. 2013), in 5-day segments with 
a 12-hour overlapping time-window.  The WRF model 
solutions are then used to drive a Lagrangian Particle 
Dispersion Model (LPDM) that calculates the CO2 
footprints for each of the CO2 tower observations.  The 
footprints or influence functions are used to in the 
inversion system to compute the updated posterior CO2 
fluxes.  During the model simulation time window, 
meteorological observations are assimilated into the 
WRF model to produce the most accurate 
meteorological conditions.  The meteorological 
observations assimilated include the standard 
measurements of wind, temperature and moisture fields 
from WMO surface stations at hourly intervals and radio 
sondes at 12-houly intervals.  The winds measured from 
the INFLUX lidar at 20-minute intervals are also 
available for assimilation.  In addition to the WMO and 
INFLUX observations, the winds, temperatures and 
moisture fields observed from the Aircraft 
Communications Addressing and Reporting System 
(ACARS) are also assimilated.  The ARCARS 
observations are available at any random times when 
observations are taken.  Distributions of the assimilated 
WMO observations are demonstrated in Fig. 1.  As 
mentioned earlier, these in-situ observations are 
continuously assimilated using the WRF FDDA 
technique that is described in Deng et al. (2009) and 
Rogers et al. (2013).  Same as in the previous studies 
(i.e., Deng et al. 2004, 2006, Rogers et al. 2013, 
Lauvaux et al. 2013, Karion et al. 2015), assimilation of 
temperature and moisture observations are only allowed 
above the model-predicted PBL top so that the PBL 
physics processes in the model are dominated by the 
thermodynamics without interference from the data 
assimilation, while winds are assimilated through the 
entire atmosphere.   

In order to evaluate the effect of assimilating various 
observation sources, as shown in Table 1, four different 
WRF experiments are conducted, and results of both 
meteorological fields and posterior CO2 fluxes are 
evaluated for these experiments: 1) NOFDDA – No data 
assimilation of any form is applied and WRF is purely 
driven by NARR; 2) FDDA_WMO – Only standard WMO 
hourly surface and 12-hourly upper-air observations are 
assimilated; 3) FDDA_WMO_Lidar – In additional to 
WMO observations, wind profiles from the local INFLUX 
HALO lidar are also assimilated; and 4) 
FDDA_WMO_Lidar_ACARS – In additional to the WMO 
and lidar observations, the ACARS observations are 
also assimilated.  As shown in Fig. 1, there are five 
upper-air observations spread across the 9-km grid. 
However, none of them are located on the 3- and 1-km 
grids and only three WMO stations are available on the 
1-km grid; thus the benefit of assimilating WMO sondes 
can only propagate through the grid boundaries into the 
3- and 1-km grids.  Since the surface observations can 
only affect the lowest portion of atmosphere up to the 
model-simulated PBL top (Deng et al. 2009), it is 
anticipated that assimilating additional upper air 
observations such as Lidar and ACARS observations 
can further improve the WRF model solutions so that the 
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transport error in the inversion system is further reduced.  
The goal of is paper is to demonstrate the effect of 

assimilating observation from various sources on both 
the meteorological model and inversion solutions. 

 
Table 1: Experimental Design 

Exp. Name Description

NOFDDA No meteorological observations of any form are assimilated 

FDDA_WMO Assimilating only WMO surface observations and upper-air sondes  

FDDA_WMO_Lidar Same as above with assimilation of INFLUX HALO lidar winds 

FDDA_WMO_Lidar_ACARS Same as above with assimilation of ACARS wind and mass fields 

 
All experiments use the identical model physics for 

all grids except that cumulus parameterization scheme is 
applied only on the 9-km grid.  For land surface process, 
4-layer Noah land surface model (Tewari et al. 2004) is 
used.  The 2.5-level MYNN scheme (Nakanishi and 
Niino 2006) is use to represent the PBL turbulence.  The 
RRTM radiation scheme (Mlawer et al. 1997) is used for 
both longwave and Dudhia scheme (Dudhia 1989) is 
used for shortwave.  KF cumulus scheme (Kain and 
Fritsch 1990, 1993, Kain 2004) is used.  For the 
preliminary evaluations conducted in this paper, each 
WRF simulation segment of the four experiments are 5-
day long, and was initialized with 3-hourly North America 
Regional Reanalysis (NARR) analyses at 40x40-km 
resolution for the initial conditions and lateral boundary 
conditions (ICs/LBCs).  The NARR analyses were 
downloaded from the Research Data Archive (RDA) 
maintained by the Computational and Information 
Systems Laboratory (CISL) at the National Center for 
Atmospheric Research (NCAR).  

In addition to assimilating observations during the 
model integration, the IC fields are further enhanced by 
rawinsonde and surface data through the WRF objective 
analysis process, Obsgrid, using a modified Cressman 
analysis method (Deng et al. 2009, Rogers et al. 2013).  
The three-dimensional (3-D) analyses and the surface 
analysis fields used for analysis FDDA are also 
enhanced by the objective analysis process and are 
defined at three-hour intervals.   

For the chemistry initialization with CO2, Hestia 
2012 product (Gurney et al. 2012) was used to 
determine the emission values.  

 
4 MODEL RESULTS 

 
4.1 Meteorological Evaluation 

 
The WRF-simulated meteorological fields are 

evaluated quantitatively by comparing the error statistical 
scores of the model-simulated wind speed, wind 
direction, and temperature T. Evaluation is performed on 
the 1-km grid only since the high-resolution grid is our 
primary interest.  Mean absolute error (MAE) and root 
mean square error (RMSE) are calculated to measure 

how close the model values are compared to the 
observed values. Mean error (ME) is calculated to 
measure the model bias for a given variable. MAE and 
ME are computed for both the surface and upper air 
observation locations separately. For the surface, the 
WRF (2-m temperature and 10-m wind) values derived 
from the lowest model layer using the similarity theory 
are compared with the surface observations. For the 
upper air, the model values are interpolated onto the 
observation locations in both horizontal and vertical 
pressure space, and are then compared with the 
observations. A calm wind threshold was used in this 
study to remove the very light winds (less than or equal 
to 1 m s-1) for the wind direction statistics calculation 
because the wind direction for near-calm wind is 
uncertain. 

Table 2 shows the ME and MAE of the WRF-
predicted 10-m wind direction, wind speed and 2-m 
temperature over the 1-km grid verified hourly against 
three WMO surface measurements, averaged over the 
period between 00 UTC 27 August and 00 UTC 3 
November 2013.  Comparing the model surface MAE 
and ME scores among all four numerical experiments, 
we notice that most error reductions occurs between 
experiments NOFDDA and FDDA_WMO.  Surface wind 
direction MAE (ME) is reduced from 30 to 19 (6 to 2) 
degrees, and surface wind speed MAE is reduced from 
1.0 to 0.8 (0.2 to 0.1) m s-1.  Since Lidar and ACARS 
observations are all taken above the surface, 
assimilating lidar and ACARS does not directly improve 
the surface MAE and ME scores for experiments 
FDDA_WMO_Lidar and FDDA_WMO_Lidar_ACARS.  
The MAE and ME scores for both experiments remain 
similar to the FDDA_WMO experiment (e.g., 19 degree 
wind direction MAE, 0.8 m s-1 MAE for both 
experiments).  Although some slight degradation from 
the FDDA_WMO experiment is noticed in wind speed 
and temperature ME scores in 
FDDA_WMO_Lidar_ACARS experiment, it has the 
overall smallest MAE scores out of all four experiments.  
There are little temperature improvements since 
temperature assimilation is only allowed above the 
model-predicted PBL. 
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Table 2. Mean error and mean absolute error of the WRF-predicted 10-m wind direction, wind speed and 2-m 
temperature over the 1-km grid verified hourly against three WMO surface measurements, averaged over the period 
between 00 UTC 27 August and 00 UTC 3 November 2013. 

  NOFDDA FDDA_WMO FDDA_WMO_Lidar FDDA_WMO_Lidar_ACARS 
Wind 

Direction 
ME 6 2 2 1 

MAE 30 19 19 19 
Wind Speed ME 0.2 0.1 0 -0.2 

MAE 1.0 0.8 0.8 0.8 
Temperature ME -1.0 -0.8 -0.9 -1.4 

MAE 2.3 2.3 2.4 2.2 
 
Table 3. Mean error and mean absolute error of the WRF-predicted wind direction, wind speed and temperature over 
the 1-km grid verified hourly against the low-level (below 2 km AGL) INFLUX lidar measurements (winds only) and 
ACARS measurements (winds and temperatures), averaged over the period between 00 UTC 27 August and 00 UTC 
3 November 2013. 

  NOFDDA FDDA_WMO FDDA_WMO_Lidar FDDA_WMO_Lidar_ACARS 
Wind 

Direction 
ME 4 2 -1 0 

MAE 26 24 15 14 
Wind Speed ME 0.2 -0.2 -0.2 -0.2 

MAE 2.0 2.0 1.3 1.2 
Temperature ME 0.8 1.0 1.0 0.5 

MAE 1.3 1.4 1.4 0.8 
 
Table 3 shows ME and MAE of the WRF-predicted 

wind direction, wind speed and temperature over the 1-
km grid verified hourly against the low-level (below 2 km 
AGL) INFLUX lidar measurements (winds only) and 
ACARS measurements (winds and temperatures) 
between, averaged over the period between 00 UTC 27 
August and 00 UTC 3 November 2013.  The information 
shown in Table 3 is the same as Table 2 except that 
validations are now performed against all upper air 
measurements, or all available measurements excluding 
the three surface stations.  Now we clearly see that error 
reduction gradually occurs from the left (expt. NOFDDA) 
to the right (expt. FDDA_WMO_Lidar_ACARS), as 
additional observations are assimilated into the WRF 
model.  For wind direction, the MAE (ME) scores 
reduces from 26 (4) degrees in NOFDDA experiment, to 
24 (2) in degrees in FDDA_WMO experiment, and to 15 
(-1) degrees in FDDA_WMO_Lidar experiment, and to 
14 (0) degrees in FDDA_WMO_Lidar_ACARS 
experiment.  For wind speed, the MAE (ME) scores are 
2 (0.2) m s-1 in NOFDDA experiment, to 2 (-0.2) in m s-1 
in FDDA_WMO experiment, and to 1.3 (-0.2) m s-1 in 
FDDA_WMO_Lidar experiment, and to 1.2 (-0.2) m s-1 in 
FDDA_WMO_Lidar_ACARS experiment.  For 
temperature, the MAE (ME) scores are 1.3 (0.8) °C in 
NOFDDA experiment, to 1.4 (1.0) in °C in FDDA_WMO 
experiment, and to 1.4 (1.0) °C in FDDA_WMO_Lidar 
experiment, and to 0.8 (0.5) °C in 
FDDA_WMO_Lidar_ACARS experiment.   Notice that 
MAE and ME scores are about the same between 
FDDA_WMO and NOFDDA, although there are slight 
degradation in temperature and slight improvement in 
wind direction in expt. FDDA_WMO from expt. 
NOFDDA.  This is expected since there are no upper air 
WMO observations available on the 1-km grids.  The 

increments in model errors (either improvement in wind 
direction or degradation in temperature) are caused by 
information propagated from the mother grids (i.e., 9- 
and 3-km grids).   

As shown in Table 3, more evident error reductions 
in both MAE and ME are noticed between 
FDDAA_WMO and FDDA_WMO_Lidar where the 
INFLUX lidar wind measurements are assimilated.  For 
example, there is a 9-degree error reduction in wind 
direction MAE and 0.7 m s-1 error reduction in wind 
speed MAE.  There are no temperature improvements 
since no temperature observations are available from 
the INFLUX lidar.  Assimilation or ACARS observations 
further reduces model MAE and ME error consistently in 
both wind and temperature fields except for wind speed 
ME which is already very small.  For example, there is a 
0.5 °C ME reduction and 0.6 °C MAE reduction in 
temperature when ACARS observations are assimilated.  
Same as indicated in the surface error statistics, expt. 
FDDA_WMO_Lidar_ACARS overall has the smallest 
error.   

Comparing between NOFDDA and 
FDDA_WMO_Lidar_ACARS, we notice the improvement 
due to assimilating observations is evident and error 
reduction is significant, especially for wind direction, but 
not for temperature since temperature assimilation is 
only allowed above the PBL.  For upper air, it is shown 
that due to assimilation of upper air observations of 
winds from the INFLUX lidar and ACARS and 
temperatures from ACARS, model improvement is quite 
obvious, especially for wind speed and wind direction.  
Temperatures appear to have smaller improvement, 
likely due to the fact that temperatures are already quite 
accurate. 

Model errors averaged in vertical and over the entire 
2-month period do not represent the temporal and 
spatial error distributions, understanding of which is 

important to transport and dispersion modeling.  Time 
series of model-simulated wind direction and wind speed 
MAE for the entire 5-day simulation segment starting 12 
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UTC, 23 Sep. 2013 (not shown) indicated that for wind 
direction error appears to show diurnal variations, and 
direction error is smaller during nighttime and larger 
during daytime.  Larger wind direction error during 
daytime is reasonable since surface wind direction is 
strongly affected by the PBL vertical mixing that is not 
well represented in the model, while during the nighttime 
wind direction is more influenced by large-scale 
conditions.  However the wind speed error does not 
appear to have (or appear to have weaker) diurnal 
variations.  This is likely because at the nighttime stable 
conditions, wind speed is not well predicted by the 
numerical models. Nevertheless, for both wind direction 
and wind speed and for both daytime and nighttime, 
assimilating surface WMO observations clearly reduces 
model error. 

We also examined the vertical MAE distributions for 
WRF-predicted wind direction and wind speed (not 
shown), averaged over time, comparing among four 
numerical experiments listed in Table 1.  For both wind 
speed and wind direction, expt. NOFDDA has the largest 
error through the entire atmosphere below ~2km AGL 
(except for the wind speed between 1 and 2km where 
expt. FDDA_WMO appears to have larger error), with a 
~30-degree wind direction error and 2.5 m s-1 wind 
speed at the surface.  Model error generally decreases 
with height.  Comparing expt. NOFDDA and expt. 
FDDA_WMO, we notice that assimilating WMO surface 
observations only improves the model-predicted winds in 
a quite deep layer (up to 2-km for wind direction and up 
to 1-km for wind speed).  This is because the FDDA sub-
model in WRF allows the influence of the surface 
observations spread to entire depth of the PBL 
depending on the stability regime (Deng et al. 2009, 
Roger et al. 2013).  Addition of the INFLUX lidar winds 
further reduces model error throughout the entire layer 
below 2-km.  The large gap between the FDDA_WMO 
and FDDA_WMO_Lidar seem to suggest that addition of 
upper air observations is more important in improving 
the model solutions than assimilating surface 
observations alone.  It is clear that addition of ACARS 
observations further reduces model errors.  The fact that 
the amplitude of error reduction is not as large should 
not suggest that ACARS is not as effective as INFLUX 
lidar.  This is simply because the lidar assimilation has 
already brought the model errors down to a small 
magnitude so that ACARS does not contribute much.  If 
we rearranged the experimental design to add the 
ACARS first (instead of the INFLUX lidar first), we would 
see larger contribution from the ACARS and smaller 
contribution from the INFLUX lidar.  It is the assimilation 
of upper air observations overall that contribute larger 
error reduction than assimilating surface observations.  
The error distributions indicate that model improvement 
due to assimilation of surface and upper air observations 
all together is quite significant, with overall >10-degree 
improvement in wind direction and > 1 m s-1 
improvement in wind speed. 

 
4.2 Evaluation of Model-Predicted PBL Depth Using 

the Halo Doppler Lidar Data 
 

In addition to wind speed and wind direction, one of 
the meteorological variables critical to the transport and 
dispersion calculation is PBL depth that defines the 
vertical extent of the well-mixed CO2 concentration.  
WRF model can produce the diagnosed PBL depth from 
its PBL sub model or PBL scheme.  Some PBL schemes 
compute PBL depth based on the model-predicted 
thermal profiles, while other schemes diagnose PBL 
depth based on the vertical profile of TKE predicted by 
the PBL scheme.  This research uses the 2.5-level 
MYNN scheme (Nakanishi and Niino 2006) that predicts 
TKE.  The PBL depth is determined by the gradient of 
TKE (i.e., the vertical location where TKE value drops off 
significantly).  We can compare the model-predicted 
PBL-depth with the observed PBL depth to measure how 
well the model represents the PBL processes.   

The Halo Doppler lidar directly measures line-of-
sight velocities and backscatter intensity from aerosols 
and other scatterers. A description of the system is 
provided by Pearson et al. (2009).  Using a suite of 
scans that repeat every 20 min, profiles of wind speed, 
wind direction, and velocity variances are derived from 
these measurements, which are used in conjunction with 
the Signal-to-Noise Ratio (SNR) to estimate the PBL 
depth.  Here, the PBL depth is manually estimated for 
each 20-min time period and located at large gradients 
in SNR and where the vertical velocity variance 
becomes small (less than ≈0.1 m2 s-2).  For the study 
time period (Sep. to Oct. 2013), the Halo lidar is 
available for use in model validation.  As an example, a 
comparison of PBL structures between WRF simulations 
(Expt. NOFDDA and FDDA_WMO_Lidar_ACASRS) and 
the INFLUX lidar observations at Indianapolis for 29 and 
30 August 2013 is made (not shown).  Generally, the 
model-predicted TKE structures are highly correlated 
with the lidar-observed vertical velocity variances and 
large gradients in SNR.  However, differences in the 
vertical extent of these the depth of mixing from the 
model output and observations, thus PBL depth as well, 
are apparent. 

Table 4 compared the MAE and ME of the WRF-
predicted PBL depth on the 1-km grid verified hourly 
against the Halo lidar estimates of PBL depth at the lidar 
site in Indianapolis.  The evaluation of PBL depth is 
conducted only for the daytime period between 17 and 
22 UTC when a well-mixed PBL is fully developed and 
quasi-stationary, for the 2-month period between 00 
UTC 27 August and 00 UTC 3 November 2013.  
Nighttime comparisons were not performed since it is 
well known that model is not able well-represent the 
stable condition; thus the predicted PBL depth is 
uncertain and unreliable.   Our results show that for all 
experiments the MAE of mode-predicted PBL depth is 
quite similar, in a range between 223 and 272 m, or ~10-
15% of the fully-developed PBL depth.  Assimilating 
meteorological observations reduces the MAE except for 
a ~10 m degradation in expt. FDDA_WMO, with expt. 
FDDA_WMO_Lidar showing improvement from expt. 
NOFDDA, and with expt. FDDA_WMO_Lidar_ACARS 
having the smallest MAE.  For ME, expt. NOFDDA 
already has small bias, and assimilating surface WMO 
observations only produces degradation.  Addition of 
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Doppler lidar and ACARS observation reduces the bias 
from expt. FDDA_WMO, with the expt. 
FDDA_WMO_Lidar_ACARS having smallest ME (i.e. -

23m).  These results again seem to promote the 
importance of assimilating upper air observations. 

 
Table 4. Mean error and mean absolute error (m) of the WRF-predicted PBL depth on the 1-km grid verified hourly 
against the Indianapolis INFLUX lidar measurements between 17and 22 UTC, for the period between 00 UTC 27 
August and 00 UTC 3 November 2013. 
 NOFDDA FDDA_WMO FDDA_WMO_Lidar FDDA_WMO_Lidar_ACARS 

ME 25 103 83 -23 
MAE 259 272 254 223 

 
4.3 Evaluation of Inverse Emissions 

 
Using the observed CO2 concentrations from the 12 

INFLUX towers shown in Fig. 3, the 5-day inverse 
emissions were computed using a Bayesian inversion 
system at 1km resolution over the urban area of 
Indianapolis.  The inversion results for Expt. NOFDDA, 
FDDA_WMO and FDDA_WMO_Lidar were completed 
and compared here in this paper.  Figure 4 shows the 
results over the two-month period (Sept-Oct 2013) for 
the whole-city emissions.  The variability among the 3 
inversion cases represents the impact of differences in 
the WRF simulations.  The WRF-FDDA with Lidar 
represents the optimal configuration with lower errors in 
both wind speed and direction, and is considered here 
as the reference case. Overall, the inverse emissions 
over the two months vary from 80ktC for Hestia to 90-
95ktC for the different inversion estimates.  The 
differences of about 50ktC among the inverse estimates 
represents about 50% of the change in the emissions 
compared to Hestia. 

 
Figure 3. Observation network showing 12 INFXLU towers. 

 
Figure 4. Five-day CO2 emissions over Indianapolis using the 
three different WRF simulations. The Hestia CO2 emissions 
were aggregated at 1km resolution and used as prior emissions 
in the inversion system (Gurney et al., 2012), indicated in black. 
The inverse emissions correspond to the 3 configurations 
described above with WRF in historical mode (NOFDDA, in 
orange), assimilating the WMO stations (FDDA-WMO, in 
purple), and assimilating the WMO and the HALO Lidar data 
(FDDA-WMO_Lidar, in green). 

 
The Lagrangian Particle Dispersion Model (Uliasz 

1994) was coupled to the WRF model over the two-
months (Sept-Oct 2013).  Particles were released 
continuously from the 12 tower locations in backward 
mode to simulate the area at the surface which directly 
influences the atmospheric concentrations.  The 
footprints for 24 September 2013 are shown in Figure 5. 
The variability of the surface influence functions 
correspond to the differences in both wind speed (extent 
of the footprints along the main wind direction) and wind 
direction (width of the footprints).  For this particular day, 
the wind direction varies only slightly between the three 
configurations whereas the wind speed was too high 
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Figure 5. Influence functions over Indianapolis at 1km resolution 
for the 12 tower locations of the INFLUX network using the 
LPDM (Uliasz et al., 1994), for 24 September 2013 (aggregated 
over 17-22UTC) driven by the meteorological variables from the 
three different WRF configurations, in ppm_day/(g/m2/hour). 

 
5. SUMMARY AND CONCLUSIONS 

 
Our results indicate that model error can be 

significantly reduced by assimilating WMO observations. 
However, the assimilation of the WMO surface stations 
has a limited impact in the vertical (up to 900m max.). 
The assimilation of the wind profiles from the HALO lidar 
improved the WRF simulated wind speed and direction 
up to 2km high. The model performances were further 
increased due to the assimilation of ACARS data, filling 
the gaps between the 12-hourly WMO radiosondes and 
providing a better spatial density than the Lidar data. 

It was found that inverse emissions from the three 
simulations are significantly impacted by the quality of 
transport simulations, with a difference of 50% in the 
emission correction after inversion depending on the 
transport simulations. The use of meteorological data 
improved the model performances and provided more 
robust CO2 emissions at the city-scale, reducing the 
systematic errors in the inverse emissions. Therefore, 
we highly recommend the use of meteorological 
assimilation systems for high resolution inversions to 
avoid the propagation of systematic errors from the 
transport model into the emission estimates. 
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