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ABSTRACT 

 

     Flash floods are considered one of the most unpredictable and costly natural disaster event caused by 

precipitation.  It is important to achieve a trustful forecast in order to help mitigate a major disaster. This task is even 

more challenging when considering a tropical and complex terrain environment. This current work is a first assay to 

introduce a Flood Alert System in the western region of the tropical island of Puerto Rico. The main tool is the use 

of recently installed X-band weather radars, which provide high temporal and spatial resolution rainfall data. High 

resolution is essential in developing a forecasting model for convective precipitation for time periods of a few hours 

or less (defined as nowcasting by the WMO). 

The accuracy of these forecasts generally decreases very rapidly during the first 30 min because of the very short 

lifetime of individual convective pixels. A number of observational studies have shown that individual convective 

cells have mean lifetimes of about 20 min, with the best performance associated with a lead-time of 10 min. 

Numerical simulation studies have contributed significantly to the understanding of storm composition and duration; 

this is just beginning to be recognized in currents nowcasting systems. The nowcasting technique developed in this 

work is a special kind of nonlinear model with stochastic and deterministic components. The rainfall forecasts 

obtained using the considered method is then routed through a rainfall runoff model (Vflo™). 

 

__________________________________________ 

 

 

 

1. INTRODUCTION 

 
Portions of western Puerto Rico are subject to flash 

flooding due to sudden, extreme rainfall events, some 

of which fail to be detected by the only NEXRAD 

(WSR-88D) radar on the island, located 

approximately 120 km away and partially obstructed by 

mountains. The use of new radars with higher spatial 

resolution and covering areas missed by the NEXRAD 

radar, are important for flood forecasting efforts, and 

for studying and predicting atmospheric phenomena. 

 

NEXRAD coverage has limitations in observing below 

10,000 feet or 3 kilometers (called the Gap) above sea 

level for the Mayagüez area and nearby towns [Cruz-

Pol et al., 2011]. 

___________________________________________ 
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At these locations, NEXRAD cannot “see” if raindrops 

are forming within the Gap, resulting in a different rain 

rate than other radars which can measure the lower 

portion of the cloud, see Figure 1. 

 

Recently, the University of Puerto Rico in Mayagüez 

Campus [Trabal et al., 2011] developed a weather radar 

network using two (2) types of radars, namely: Off-the 

Grid (OTG) and TropiNet, with radius of coverage of 

15 km and 40 km, respectively. This network is capable 

of monitoring the lower atmosphere, where most 

atmospheric phenomena occur.  Both radar systems are 

short-range and high frequency (X-band), compared to 

NEXRAD. This allows for high spatial (60m 

versus 1km for NEXRAD) and temporal resolution 

(less than 1 min versus 6 min for.NEXRAD.) This work 

represents the first time that TropiNet radar technology 

was used for hydrologic analyses and specifically for 

rainfall forecasting in western Puerto Rico.  
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Short-term rainfall forecasts have commonly been made 

using Quantitative Precipitation Forecast (QPF).  The 

introduction of quantitative precipitation forecasting 

(QPF) in flood warning systems has been recognized to 

play a fundamental role. 

 

 

Figure 1. Long range problem with NEXRAD [based on Westrick et 

al., 1999]. The figure does not include topography of the land surface. 

 

QPF is not an easy task, with rainfall being one of the 

most difficult elements of the hydrological cycle to 

forecast [French et al., 1992] and great uncertainties 

still affect the performances of stochastic and 

deterministic rainfall prediction models [Toth et al., 

2000]. 

 

Currently, this capability does not exist in western 

Puerto Rico, and it is needed because of the high 

potential for flooding in certain areas (e.g., in flood 

plains near the principal rivers of the region). In this 

research, short-term rainfall forecast analysis is 

performed using nonlinear stochastic methods. Once 

obtained, the rainfall forecast is introduced into a 

hydrologic/inundation model Vflo and into the 

Inundation Animator configured for the Mayagüez Bay 

Drainage Basin (MBDB).  Specific components of the 

research are: the inclusion of calibration and validation 

of rainfall estimates produced by the TropiNet radar 

network, the development and validation of the 

stochastic rainfall prediction methodology, the 

calibration and validation of the inundation algorithm at 

selected locations within the MBDB, and the proto-type 

of an operational, real-time flood alarm system for the 

MBDB.  The proto-type, automated Flood Alarm 

System (FAS) will be able to send near-real time 

updated inundation images to a website on the Internet.  

 

2. STUDY AREA 

 

The study area encompasses the MBDB, is 819.1 km
2
 

in size [Rojas, 2012] and is located in western Puerto 

Rico.  The region has three (3) important watersheds: 

Río Grande de Añasco, Río Guanajibo and Río Yagüez. 

The area includes twelve (12) municipalities: 

Mayagüez, Añasco, Las Marías, San Sebastián, Lares, 

Maricao, Yauco, Adjuntas, Sabana Grande, San 

Germán, Hormigueros and part of Cabo Rojo. These 

three important rivers discharge into Mayagüez, Añasco 

and Cabo Rojo branches, respectively. According the 

U.S. Census Bureau Mayagüez has 89,080 habitants 

and a total area of approximately 143.53 km
2
 of which 

about 25.20 km
2
 are in flooding areas, Añasco has 

29,261 habitants with a total area of about 102.82 km
2
 

and 23.11 km
2
 are in flooding areas, and Cabo Rojo has 

50,917 habitants with a total area of about 187.81 km
2
 

and 44.42 km
2
 are in flooding area [U.S. Census 

Bureau, 2010], see Figure 2. 

 

 
Figure 2. Population lives in floodable areas, U.S. Census Bureau, 

2010. 

 

The basin of the Río Grande de Añasco has an area of 

467.7 km
2
 of which approximately 10 percent of the 

area is flat land and the other remaining 90 percent is 

mountainous. The floodplain covers approximately 

three-fourths of the flat land, and the residential 

developments in the Añasco municipality are partially 

within this area, and therefore can be affected by 

flooding. Río Grande de Añasco flows westerly 74 km 

to the coast where its discharges into the Bay of 

Mayagüez. Changes in elevation are shown in Figure 3 

and vary from zero meters at mean sea level in the 

coastal areas to 960 meters in the mountainous areas. 

 



 

 

 
Figure 3. Digital Elevation Model. 

 

 

3. SOIL CLASSIFICATION 

 

The soil map was provided by United States 

Department of Agriculture – Natural Resources 

Conservation service (USDA-NRCS). 

 

The soil textures present in this study as percent of area 

are clay with 62.49%, clay–loam 24.96%, rock 8.69%, 

loam 3.00%, sand 0.81% and gravel 0.04%.  A soil map 

describing the class distribution is necessary to assign 

the values the Green-Ampt infiltration parameters, see 

Figure 4  

 

 

 

Figure 4. Soil Present in the study area. [Source: Soil Survey 
Geographic (SSURGO)]. 

 

Twenty (20) different classes of land cover and forest 

type are present over the study area corresponding to 

different kind of forest, woodland and agriculture. The 

classification of land cover in this model is used to 

assign values for physical based parameters which are 

important in the simulation with Vflo, other important 

parameters with the land use are manning‟s roughness 

coefficient, rainfall interception, evapotranspiration, 

crop coefficient and other. 

 

4. HIGH RESOLUTION RAINFALL RADAR PRODUCT 

 

Commonly, the flood alert systems have fulfilled the 

role of providing flood notification to many people and 

have saved lives and properties. However, many alert 

systems fail due to low precision of the models and the 

sudden change of the atmosphere. One of the greatest 

sources of uncertainties in the prediction of flooding is 

the rainfall input. 

 

NEXRAD has been used by the NWS to estimate 

rainfall in Puerto Rico. The NEXRAD facility for 

Puerto Rico is located near the City of Cayey at 860 m 

above mean sea level and at approximately 120 km 

from Mayagüez city. The location of radars provides 

full nationwide coverage over the contiguous United 

States at a specified height above each of the individual 

radars, but this may present a problem in the western 

Puerto Rico due to the distance from the NEXRAD 

radar and topography of the Island. Currently, the 

Puerto Rico Weather Radar Network (PRWRN) 

administrated by UPR-Mayagüez has three (3) 
polarimetric TropiNet radars. The TropiNet radars are 

Doppler dual-pol radars which allow the radar beam to 

measure reflectivity close to the ground, overcoming 

the shadow effect of the Earth‟s curvature, while 

maintaining high range and azimuth. They have high 

space and time resolution for weather monitoring and 

detection, and are capable of generating very high 

resolution data with a range of 40 km of radius or 

maximum radial distance (horizontal range) of 80 km of 

diameter. The spatial resolution is very high if this is 

compared with NEXRAD radar (60 m versus 1 km). 

The study area coverage is 940x740 radar pixels and its 

temporal resolution is 1-minute.   
To analyze the data it was necessary to develop a model 

to convert raw data to NetCDF data and then convert 

the reflectivity data in dBZ to rain-rate in (mm/hr) 

using empirically derived Z-R relationships. Marshal 

and Palmer [1948] equation is the default Z/R 

relationship employed by the NEXRAD and TropiNet. 

 

5. STOCHASTIC MODELING OF SHORT-TERM 

RAINFALL 

 

For atmospherics phenomena it is difficult to predict 

deterministically what will occur in the future. A 

mathematical expression which describes the 

probability structure of the time series that was 

observed due to the phenomenon is referred to as a 

stochastic process. The precipitation is an example of 

stochastic phenomenon that evolves in time according 

to probabilistic laws. A time series model is adapted to 



 

 

a series in order to calibrate the parameters of stochastic 

process. Stochastic models are able to provide reliable 

predictions over small temporal and spatial scales, 

which are interested in hydrological applications. 

 

An algorithm for predicting 10, 20 and 30 min in 

advance the spatial distribution of rainfall rate is 

introduced in this work.  The algorithm is based on the 

fact that TropiNet radar rainfall-rate data provides 

estimations of the rainfall with high spatial and 

temporal resolution. The suggested algorithm uses 

TropiNet (RXM-25) data to predict the variability of 

the rainfall field in time and space. It is assumed that 

for a short time period, (10, 20 and 30 min) a rain cloud 

behaves as a rigid object, with all pixels moving in the 

same direction at a constant speed.  Thus, the most 

likely future rainfall areas are estimated by tracking rain 

cell centroid advection in consecutive radar images.  

The suggested algorithm is a special kind of nonlinear 

model with stochastic and deterministic components. 

The rainfall process exhibits significant changes in time 

and space, and it can be characterized as a non-

stationary stochastic process.  To face the nonstationary 

characteristic of the process, parameters are estimated 

at every time and spatial domain. 

 

The model consists in considering the rainfall shape 

data as a rectangular grid with 940 columns and 740 

rows of pixels for a total of 695,600 pixels, every pixel 

size is 0.06 kilometers wide and 0.06 kilometers long. 

From the grid data select a zone of 81 pixels that was 

divided in squares of       pixels, where (    is 

referenced to columns of 9 pixels and       rows of 9 

pixels with total zones of 8528 (82x104) in every 

window, as shown in Figure 5. Several zones sizes were 

explored for            {           } and it was 

found that the larger the zone size, the larger the 

number of degree of freedom. However, resolution was 

degraded with increased zone size. 

 

Figure 5. Rectangular grid of rainfall data. 

 
In the model, the use of the same zone in the before 

windows       and       is necessary, see Figure 6. 

Every zone (9x9) should have a minimum of twenty 

four (24) rain pixels with twenty (20) degrees of 

freedom. Zones with less pixel of rain could not be 

selected to forecast analysis. In zones where the 

prediction movement suggest there is a rainfall cell but 

the zone has not the necessary pixels required (24 

pixels) an interpolation was applied. The interpolation 

was “Kriging simple” using the twenty five (25) pixels 

nearest to pixel that has no prognostic. 

 

 

Figure 6. Zone 9 x 9 at time t-1 and t-2. 

 

The model is defined by the equation 

               (         )    [    ∑(      ̅                 ̅                           )]              (1) 



 

 

 

where       represents the geographic position or 

coordinates latitude and longitude of every pixel in the 

grid,   is the zone. This process starts in pixel 1 until 

pixel 8528. In every zone, unknown parameters should 

be determined                 :   is the minimum 

value found between previous values of             and 

            in their respective zones (  ,   is the 

reflectivity maximum value found between previous 

values of             and              in the specific zone 

(  .  

 

The mathematical structure of the model was developed 

from previous work [Ramirez-Beltran et al., 2008].  In 

the current work, this model was used because this 

scheme ensures that rainfall forecasts will fall inside of 

the most likely rainfall intensity domain [    , which 

was derived by the observed local rainfall distribution.   

 

 ̅           is the reflectivity average value in the time 

     . The average value was determined in every 

pixel into each zone. It was obtained averaging the 

eight pixels closest to the pixel under study. Similarly, 

 ̅           is the average reflectivity value in the time 

     , see Figure 7. 

 

 

Figure 7. Average pixels at a specific zone using the eight nearest 
pixels. 

 

The variable             is the ratio between the pixels 

with maximum reflectivity.                   in every 

cloud or cell and the nearby pixels                  forming 

the cloud or cell and the random variable           is a 

sequence of an unobserved random variable with mean 

zero and constant variance associated to the pixel         

The variable Phi (    ) is changing in the equation 

every zone (9x9) in each window. This variable was 

determined first by linearization of the nonlinear 

equation (Phi-initial) and after using optimization 

nonlinear techniques with constrains “Sequential 

Quadratic Programming” (SQP), where the Phi 

parameter is a bias correction factor and its maximum 

value must not exceed 1.1. The initial coefficient deltas 

               were obtained through the estimation 

method “least squares” by linearization of nonlinear 

equation (exponential). Once the variables initial deltas 

were found, the next step is to find the variable Phi 

(    ) initial. These values were used to forecast 

rainfall at one (1) lead-time and successively with the 

following forecasts. 

 

The motion algorithm was based on a spatial and 

temporal comparison, classifying clouds with high 

reflectivity and removing pixel with very low 

reflectivity, in this work the minimum reflectivity was 3 

dBZ. The next step is the normalization of reflectivity 

values between a range of 0 and 1 using minimum and 

maximum values of reflectivity in each image or 

windows, as shown the equation (2), where    is the 

normalized reflectivity,    reflectivity in each pixel, 

     minimum reflectivity 3 dBZ and      is the 

maximum reflectivity in the window. Derivation of the 

cloud motion vector requires tracking cloud rainfall 

cells [Ramirez-Beltran et al., 2014]. 

 

  

    
       

         

  

 

 

(2) 

 

The classification of the normalized values is divided 

into two groups. This result was stored in a binary 

matrix   . The value    exceeding the percent of pixel 

with a minimum reflectivity        is assigned value of 

one (1) and the value    that is smaller than the percent 

of pixel with a minimum reflectivity        is assigned 

the value of zero (0). In this case,        is 10 percent 

of pixels with values of minimum reflectivity [Ramirez-

Beltran et al., 2015]. 

 

 

                    (3) 

                    (4) 

To estimate the initial values of deltas, application of a 

constrain was not necessary, therefore the initial deltas 

values can be positives or negatives. The main equation 

was linearized by considering values of 



 

 

            ̅             ̅                        and              

and the unknown values of                   , left the 

parameter phi      temporarily ignored. 

 

This method consists in solving the equivalent linear 

model and using these values as the initial point.  The 

convergence of nonlinear routine heavily depends on 

the selections of the initial points. Thus, if the initial 

point is far away from the optimal solutions the 

algorithm may converge to a suboptimal point or may 

not converge. [Ramirez-Beltran et al., 2015] and 

[Torres, 2014]. 

 

 

6. HYDROLOGIC MODEL 

 
The hydrologic model used in this research is Vflo 

[Vieux and Vieux, 2002]. Vflo is a fully distributed 

physically based hydrologic (PBD) model capable of 

utilizing geographic information and multi-sensory 

input to simulate rainfall runoff from major river basins 

to small catchments, see Figure 8. 

 

 

Figure 8. Detailed GIS grid runoff in the watershed. 

 

Vflo is a hydraulic approach to hydrologic analysis and 

prediction. Overland flow and channels are simulated 

using the Kinematic Wave Analogy (KWA). The model 

utilizes GIS grids to represent the spatial variability of 

factor controlling runoff. Runoff production is from 

infiltration excess and is routed downstream using 

kinematic wave analogy. Computational efficiency of 

the fully distributed physics-based model is achieved 

using finite elements in space and finite difference in 

time.  Vflo is suited for distributed hydrologic 

forecasting in post-analysis and in a continuous 

operation mode, derives its parameters from soil 

properties, land use and topography and, in this case the 

precipitation, is obtained from the TropiNet radar. The 

goal of distributed modeling is to better represent the 

spatial-temporal characteristics of a watershed 

governing the transformation of rainfall into runoff. 

 

There is a sequence called the “Ordered Physics Based 

Parameters Adjustment” (OPPA) method developed by 

Vieux and Moreda [2003]. The calibration process 

(OPPA) approach include estimates of the spatially 

distributed parameters from physical properties, assigns 

channel hydraulic properties based on measured cross-

sections where available, studies model sensitivity for 

the particular watershed, and identifies response 

sensitivity to each parameter. Furthermore, it runs the 

model for a wide range of storms, from small to large 

events. 

It was fundamental to study the physical configuration 

of the watershed, such as a Digital Elevation Model 

(DEM), the digitized topography, soils map, land use 

map and information about the basin. Some hydrologic 

and hydraulic studies by U.S Geological Survey -

Current Water Data for Puerto Rico [2014] and FEMA 

[2012] are used in this research as additional 

information. Some stations from the USGS were used 
to compare and validate the runoff with the results from 

the hydrological model using radar data. 

 

Additionally, a GOES satellite-based potential 

evapotranspiration (PET) product, with resolution of 1 

km over the entire island each day, was used in this 

research. The hydrological Vflo model uses PET in 

units of mm/hr and the same resolution as the Digital 

Elevation Map in the current study. A subroutine was 

developed to change the resolution of the PET data 

from 1 km to 200 meters, and the units from (mm/day) 

to (mm/hours).  

 

The infiltration is an important parameter to be able to 

estimate the runoff. The runoff is caused only when the 

rainfall rates exceed infiltration rates. The hydrologic 

model use Green-Ampt infiltration routine to model 

infiltration. Other characteristic parameters in the 

infiltration process are necessary: Hydraulic 

conductivity, wetting front, effective porosity, soil 

depth, initial saturation, abstraction and impervious 

area, these variables are affected by land use and soils 

properties.  

  

7. EVENTS SELECTION 

 

To select the events, it was necessary to analyze every 

storm measured by the radars during 2012 and 2014. It 

was necessary to determine that the radar data had not 

interruptions or was damaged. If the radar had corrupt 

data, the storm is discarded. Table 1 includes the dates 

and duration of every storm to the current research. 

 



 

 

The analysis had important previous steps, the first was 

taking every minute data from TropiNet radar and 

determine that the radar data had not interruptions or 

was damage. If the radar had corrupt data, the storm is 

discarded.    

 

The next step was to select the radar dataset with the 

same elevation angle (3˚). The TropiNet radar has the 

capacity to store data with two or more different 

elevations angles. The final step was to choose those 

precipitations that have data with complete storm 

duration. 

 

Table 1. Characteristics of studied storms 
Date Duration 

(UTC) 

March 28, 2012 
7 hr. 

16:27-23:58 

March 29, 2012 
6 hr. 

00:36-06:53 

April 30, 2012 
5 hr. 

17:55-22:21 

October 10, 2012 
5 hr. 

16:10-21:43 

February 12, 2014 
7 hr. 

16:00-23:29 

May 06, 2014 
7 hr. 

16:45-23:59 

May 21, 2014 
7 hr. 

16:46-23:00 

June 29, 2014 
5 hr. 

17:00-22:00 

June 30, 2014 
4 hr. 

16:00-20:15 

July 05, 2014 
4 hr. 

16:44-20:00 

 

 
8. RESULTS 

 

The NEXRAD pixels have 1 km
2
 area and the TropiNet 

pixels have 60 meter for each side (0.0036 km
2
 area), 

this means that 256 TropiNet pixels equivalent in size 

to one (1) NEXRAD pixel. So within one NEXRAD 

pixel there are 256 TropiNet pixels. Figure 9 presents a 

comparison image on a specific minute between 

TropiNet and NEXRAD. 

 

 

Figure 9. Comparison TropiNet and NEXRAD on May 06, 2014- 
17:42. 

 

Figure 10 presents one of many comparisons between 

Rain Gauge, NEXRAD and TropiNet with the original 

resolution at rain gauge station designate as C1 with 

latitude 18.2094˚ and longitude 67.1401˚, date May 06, 

2014. TropiNet with the original resolution (60mx60m) 

presents a rain rate data with more appropriate values at 

C1 stations, considering rain gauge observations as the 

true values. This is possible due to proximity of 

TropiNet‟s beam to the land surface and its high 

resolution data. 

 

 

Figure 10. Comparison Rain Gauge-NEXRAD and TropiNet at 
station C1, on May 06, 2014 (Moderate Rain) with original 

resolutions data for TropiNet and NEXRAD. 

 

In western Puerto Rico sudden precipitations events 

occur with very short durations due to the atmospheric 

conditions and topographic features of the region. 

Precipitation events may develop, occur and dissipate in 

periods as short as 1, to 3 hours.  

 

Knowing the precipitation characteristics, the 

nowcasting model developed in the current research 

only needs two lag times for prediction. This means that 

the model has the capacity to forecast the rainfall even 

if the duration is very short. The developed model is 
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presenting the best prediction when the lead-time is 10 

min. The postulated rainfall nowcasting algorithm 

involves two major tasks: a) predicting the future 

location of the rain pixels, and b) predicting rainfall at 

each pixel. 

 

Figure11 presents the sequence of event during 40 min 

considering each ten 10 min of cloud motion within a 

total duration event of 7 hours where to=16:50 hr, on 

March 28, 2012.  

 

For all events, the best results were presented with a 

prediction of 10 min. Western Puerto Rico area 

geographical position makes it susceptible to sudden 

rainfalls that are changing rapidly in time and space. 

Due to this change, a lead-time of 10 min is the time 

prediction more adequate to this precipitation class. A 

larger lead-time results in greater statistical errors. 

Contrarily, using a lead-time smaller than 10 min the 

purpose of flood alert system will be annulled by the 

absence of time to evacuation. 

 

 

Figure11. Cloud motion sequence with a lead-time of 10 min. 

Rainfall is estimated in each pixel within every zone. 

Thereby, the suggested regression model was 

developed under the following assumption: It is 

expected that in a short time (10 min) period a rain 

cloud behaves approximately as a rigid object and the 

cloud rain pixels moves in a constant speed and 

direction. Thus, the most likely future rainfall areas can 

be estimated by using the advection of the centroids of 

the rain cells in consecutive images. The current 

estimation reflectivity is a function of the previous 

reflectivity images observed. Rainfall nowcasting 

algorithm task is predicting rainfall rate at each pixel. 

The comparison of estimated or predicting reflectivity 

using the main Equation (1) and observer reflectivity at 

each pixel were furthermore performed. Figure12 

shows the comparison with a lead-time of 10 min where 

to=16:50 hr, on March 28, 2012.  

 

 

Figure 12. Reflectivity sequence with a lead-time of 10 min. 



 

 

An analysis for the nowcasting requires a combination 

of meteorological and hydrological statistics. This 

allows for a better understanding of the behavior of the 

spatial and temporal accuracy of the storm prediction.  

A good nowcasting includes accuracy of the spatial, as 

well as in the temporal level and accuracy of the 

predicted rainfall intensity.  

Model performance criteria for the prediction required 

quantitative comparison measurements; these 

measurements include ten (10) storms. The accuracy of 

rainfall prediction of each pixel can be measured by 

decomposing the rainfall process into sequences of 

discrete and continuous random variables. 

Some attributes are related with the contingency table, 

hit rate (HR) is the ratio of correct forecasts to the 

number of times this event can occurred. Other attribute 

is the probability of detection (POD) as the fraction of 

those occasions when the forecast event occurred on 

which it was furthermore forecasted, in this case it is 

the probability that rain occur. The False Alarm Ratio 

(FAR) is the relation of the forecast events that fail to 

materialize; the best possible FAR is cero and the worst 

possible FAR is one.  

For lead-times of 10, 20 and 30 min the storms provide 

an average hit rate (HR) of 0.90, 0.86 and 0.84, 

respectively. The probability of detection (POD) of 

storms varies from 0.61, 0.50 and 0.41. While the false 

alarm rates (FAR) is 0.27, 0.38 and 0.46 for lead-time 

of 10, 20 and 30 min, respectively.  

 

Figure13 shows POD values and FAR values for the 

complete set of storms. In the ideal situation POD 

should approach to one (1), while the FAR results 

should approach to zero (0). 

 

 

 

Figure13. Probability of detection and false alarm for the all storms. 

 

For lead-times of 10, 20 and 30 min the storms provide 

an average hit rate (HR) of 0.90, 0.86 and 0.84, 

respectively are shown Figure14. The hit rate score is 

the fraction of observed events that is forecast correctly. 

It ranges from zero (0) at the poor end to one (1) at the 

good end. The Root mean square error (RMSE) and 

Bias ratio (BR) measure the accurate of the simulation 

for all ten (10) studied. The RMSE average values are 

0.026, 0.077 and 0.144 mm and the Bias average values 

are 0.97, 0.98 and 1.04 for lead-times of 10, 20 and 30 

min respectively. 

 

The estimation Bias ratio for a lead-time of 30 min 

presents an average over estimation prediction, while 

the estimation Bias ratio for a lead-time of 10 min and 

20 min show sub estimation. The Bias ratio for the 

three lead-times is near to one, this mean that they are 

good estimates [Pielke, 1984]. 

 

 

Figure14. Hit rate for the all storms. 

 

The RMSE average in 10 min lead-time presents the 

best result compared with the other lead-time of 20 min 

and 30 min. The RMSE is increasing due to the fact that 

large errors are occurring because the lead-time is 

increasing. 

 

Figure 15 show the average rainfall for all rain pixels 

during each time interval (10 min) for the event on 

March 28, 2012. In the Figure 15, a time shift is 

observed.  This is due to cloud velocity movement. The 

time shift could be estimated in the future if additional 

atmospherics data were available. In general, the mean 

time shift depends of the storms‟ lead-time.  
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Figure 15. The average rainfall for all rain pixels in each time 

interval with lead-time of 10 min on March 28, 2012. The blue line 
represents the observed data (TropiNet) and the green line represents 

the forecasted data accumulated precipitation for all rain pixel along 

the total storm event. 

 

Figure16 present for the event on March 28, 2012. It is 

the accumulated average rainfall for all rain pixels 

during the total event. It was calculated taking the 

rainfall total during the storm and the precipitation total 

area.  

 

 

Figure16. The accumulated precipitation average for all rain pixels 

during whole event on March 28, 2012. The blue line represents the 

observed precipitation and the green line the forecast.  

 

Figure17 present the scatter plot at the same rainfall 

event. 

 

 

Figure 17. The scatter plot of the forecast event on March 28, 2012. 

 

The Hydrological model Vflo required the ensemble of 

various layers that perform the physical and 

topographic characteristics of the basin area. These 

layers are formed by parameters as: effective porosity, 

hydraulic conductivity, wetting front, roughness, soil 

depth, and initial saturation which can be most sensitive 

in the watershed. Spatially distributed parameter and 

input from radar rainfall requires new methods for 

adjustment in order to minimize differences between 

simulated and observed hydrographs. The hydraulic 

roughness ( ), hydraulic conductivity ( ) and initial 

saturation (   are the most sensitive parameters of the 

hydrological model. These values are estimated from 

physical properties of the watershed adjusted to 

reproduce system behavior [Vieux and Moreda, 2003]. 

The hydraulic conductivity controls the total amount of 

water that will be split into the surface runoff. The 

hydraulic roughness affects the peak flow and the time 

to peak and initial saturation is related with the existing 

humidity into the soil.   

Scalars are multiplied by these parameter maps to 

adjust the value in each grid cell while preserving the 

spatial heterogeneity. The sequence of adjustment was 

recommended by Vieux and Moreda [2003] to 

minimize the objective function for volume, and then 

peak flow, obtaining an overall optimal parameter set 

for the storms.   

 

The reference hydrographs were developed from point 

observations or observed data of USGS stations 

numbers: #50144000 at Rio Grande de Añasco (San 

Sebastián), #50136400 at Rio Rosario (Hormigueros) 

and #50138000 at Rio Guanajibo (Hormigueros) (U.S 

Geological Survey -Current Water Data for Puerto Rico 

[2014]) and compared with results from the 

hydrological model.  

 



 

 

Several adjustments parameters were made as necessary 

to produce consistent results at the USGS stations 

compared with every storm. The watershed parameters 

were adjusted upstream of the observed point (USGS 

flow stations) by the adjustment method described by 

Vieux and Moreda [2003]. They employ a scalar to 

adjust parameter maps so that the proposal scalar 

magnitudes change while the spatial variation is 

preserved. The scalar used to multiply the  ,   and   

parameter maps area defined as follows [Gourley and 

Vieux, 2005]. 

 

Study model sensitivity was done for the watershed to 

identify response sensitivity for peak flow to each storm 

changing the multiplicative factor in the parameters. 

The events evaluated were 10 events. A list of 

parameter ensembles is created for each storm in every 

station as shown in Figure 18. A total of 450 

simulations were done for this analysis. 

 

A compilation of individual simulations are determined 

based on comparison with the observed stream flow 

data from (U.S Geological Survey -Current Water Data 

for Puerto Rico [2014]). The hydrologic evaluation 

consist of making multiples runs, setting the sensitive 

parameters in each event, yielding the best simulation 

between observed data from USGS and estimated data 

from the nowcasting model. The matching of both 

peaks in every storm was successfully accomplished 

with flow values. 

 

 

 

Figure 18. Flow chart of the calibration factor panel for peak flow. 

 

The separation base flow method used in the USGS 

stations was the straight line method. It is achieved by 

joining with a straight line the beginning of the surface 

runoff to a point on the recession limb representing the 

end of the direct runoff.  Comparison results indicate 

that the nowcasting model is capable of estimating 

hydrographs at distributed positions within a watershed 

based on knowledge of hydrographs at USGS stations. 

The hydrograph shape is observed with high accuracy, 

with rising and falling limbs, and hydrograph peaks 

timed well. Small adjustment between 0.8 and 1.20 

were present in the calibration factor. Figure19 presents 

the hydrograph of observed data from the San Sebastian 

USGS station compared with the simulated results 

using the nowcasting approach in the hydrological 

model Vflo. 

 

Figure 19. The runoff observed data (USGS) blue line and simulated 
data (Nowcasting) red line at San Sebastián station on March 28, 

2012.  
 

Figure 20 shows the runoff observed data from USGS 

and the runoff estimated data using the nowcasting 

results.  

 

Figure 20. The runoff observed data (USGS) blue line and simulated 

data (Nowcasting) red line at Guanajibo station on July 05, 2014.  

 

Figure 21 presents the comparison between data and 

observation on March 28, 2012, at Rosario station 

USGS. 

 



 

 

 

Figure 21. The runoff observed data (USGS) blue line and simulated 

data (Nowcasting) red line at Rosario station on March 28, 2012.  

 

The probabilistic flood forecast developed in this 

research together with the inundation model are capable 

of providing a forecast of when and where river banks 

are likely to be overtopped. This could be more detailed 

with several cross sections into the river. 

Decisions for evacuation can be categorized by 

determining the risk that overtopping represent to 

residents in areas adjacent to rivers or stream flows. 

The available knowledge when the evacuation decision 

can be made include probabilistic flood forecast 

published by each zone or location with large historical 

floods. Furthermore, it is then associated with the 

relevant topographical and demographical information 

for the basin and river, and the cost associated with the 

flooding and evacuation. 

 

The approach of FAS (Flood Alert System) is to 

minimize loss of life and disruptions to communities 

through identification of the evacuation decision and 

strategy that has the maximum expected value under 

current conditions. The potential cost related with the 

decision model for evacuation can be categorized as 

losses resulting from preventable flood damage and 

losses from evacuation. 

Inundation Analysis is a Vflo extension that provides 

images and animation showing the extent of forecast 

inundation, which can be used an indication of flood 

risk [Vieux, 2013].  

 

To show the full potential of this tool in enhancing the 

visualization of the flood area, the program was run 

with a large storm data. Figure 22 presents a specific 

time for the basin area on March 28, 2012. The area 

north was the most affected by the rainfall on this 

event.  Inundation Analysis presents an inundation 

sequence each hour. Other events were modeled using 

inundation animation. 

 

 
Figure 22. Inundation at specific time, on March 28, 2012. 

 

 

9. CONCLUSION 
 

This paper represents the first time that TropiNet radar 

technology has been used for hydrologic analyses and 

specifically for rainfall forecasting in Puerto Rico.  

Results from the nowcasting model at spatial and 

temporal scales demonstrated the capability of the 

model to reproduce observed rainfall, for each 

nowcasting lead-time with relatively good agreement.  

The best statistical results were found in the rainfall 

nowcasting model with a lead-time of 10 min, as 

expected. It is well known that prediction of sudden 

storms using rainfall nowcasting models represent the 

category that are the most difficult to predict, and 

consequently, providing accurate flash flood warnings 

from these types of storms is a major challenge. 

 

The nowcasting model has a limitation in the time shift 

because we are assuming that the cloud is a rigid object 

and that the cloud speed is constant, when in reality 

these parameters could vary. To find the actual weather 

conditions, more atmospheric parameters would need to 

be taken into account. In fact, cloud speed depends on 

its formation, and other physical parameters that are 

constantly changing [Corfidi et al., 1996]. These factors 

should be taken into account in future works. 

 

The major contribution of this research is the postulated 

model that represents the spatial and temporal variation 

of rainfall rates. Several parameter estimations were 

developed at each spatial and temporal domain, and the 

stochastic behavior of rainfall intensity was represented 

by an exponential time and spatial lag model, which is 

an approximation of a stochastic transfer function. 

 

 

 



 

 

The algorithm searches for contiguous rain pixels and 

identifies rain cells in the last two radar images to 

estimate the cloud motion vector. This newly developed 

rainfall nowcasting algorithm was validated with ten 

(10) storms and results comparing the algorithm with 

observed data as well as the hydrological results 

showed that the nowcasting model is a suitable tool for 

predicting the most likely areas to become inundated. 

 

Comparisons between rain gauges, TropiNet and 

NEXRAD demonstrated that the TropiNet radar system 

provides a higher degree of accuracy in rainfall 

estimation compared to NEXRAD. 

 

This was the first attempt to evaluate a rainfall 

prediction in the western Puerto Rico area. The most 

hydrological sensitive parameter in the basin area is the 

initial saturation. 

 

When the hydrologic model was evaluated within the 

Mayagüez bay drainage basin with three USGS 

reference stations, the San Sebastian station showed the 

highest flow. The events analyzed presented more 

rainfall in the north basin area. 

 

The nowcasting model was evaluated with the available 

events from TropiNet radar, but it was develop to also 

work with events with high precipitation. Similarly, the 

hydrological model was evaluated in this study with 

relatively small flow (180 m
3
/s), but could be evaluated 

with extraordinary events when they occur. 

Unfortunately, during the study period there were no 

high precipitation events. 
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