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1. Introduction. 

 In most scientific approaches, the theory is 
reserved for explaining the phenomena observed 
in nature that are often revealed by empirical 
observation. Measurements and theory are 
intimately interconnected and science requires 
explanation of measurements by theory. This 
observation leads to a question regarding the 
consistency of scientific information and the best 
methodology to obtain theoretical results. 
Arguments about consistency of scientific 
information are relevant to application of neural 
networks (NN) to environmental problems. In fact, 
the evaluating the information contained in the 
input data is crucial to successful application of 
NNs for forecasting.  

The goal  of this work is to show an application 
of  understanding experimental data for prediction 
of ozone from an urban dataset.   

The relevance of input information during the 
training phase will be emphasized.  

 
2. Deterministic and intelligent models for air 
pollution  

It is often necessary to build models to predict 
air pollution based on historical data. Many 
models exist to simulate environmental 
conditions. The deterministic models are based 
on the knowledge of boundary conditions and of 
the physical equations. Lagrangian and Eulerian 
models (Finlayson-Pitts B at al (1999), Zhang J. 
et al. (2007)) are the two main physical 
approaches applied for air pollution predictions. 
Each deterministic model describes some 
conditions and simulates the pollutants under 
those conditions.  

When deterministic models are compared with 
measurements from monitoring stations, 
sometimes the results are disappointing, 
especially for the simulation of the chemical 
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reactions in urban areas. In these cases where 
deterministic models miss the prediction, an 
intelligent modeling approach (such as NN or 
support vector machine (SVM)   can be a valid 
alternative.  For the prediction of ozone some 
authors use NN (Comrie (1997), Gardner et al 
(2000), Ibarra-Berastegi et al. (2008)), while 
others the SVM (Feng et al. (2011), Ortiz-García 
et al (2010)).  Here we have used the neural 
network model. 
To reproduce observed ozone the main factors to 
consider are the following: 

 Dispersion induced by meteorological 
conditions (Chen et al (2011) 

 Thermal and mechanical turbulence in the 
boundary layer (McElroy et al. (1986))  

 Emission factors characteristic of each source 
(Lighty et al. (2000))  

 Simulation of chemical reactions during the 
transport time from emission the monitoring 
station 
 
However, one must consider additional 
challenges to simulating air pollution in urban 
areas. While the relationship between cause and 
effect is often easy to determine for closed 
systems (i.e. wind-tunnels (Blocken et al (2007)) 
or water-channel simulations (Yee et al. (2006)), 
in the case of urban data this relationship is much 
more difficult to determine. In real situations, the 
complexity of the models is linked to the 
complexity of the boundary conditions.  In such 
cases,  one must consider unknown information 
as a primary issue to address before of any model 
application.  
 
3. Definition of the mathematical arguments 
diagram (MAD)  

To optimize input data to an NN we have 
introduced the definition of the Mathematical 



Arguments Diagram (MAD) concept. This 
concept consists of a graph that explores the 
relationship between input variables used to train 
the NN. The MAD graph shows the information 
levels involved in the physical process that we 
wish to simulate. Figure 1 shows a general 
scheme for MAD.  

The MAD graph contains the following 
information: 

 the independent variable (X1, … Xn) or input 
for NN models; 

 the inner parameters of NN models (K1… Kp); 

 the argument equation for the dependent 
variable (Y(X1..Xn;[K1..Kp]). 

 
The graph is fundamental to defining all 

relevant variables connected with the physics.  
The output argument equation (the black 

square box in Figure 1) is: 
 
Y=Y(X1, … Xn; [K1,..,Kp])  (1) 
 
There exists a strict correspondence between 

the MAD graph and the argument equation. For 
each MAD, an argument equation is given and 
vice versa.  

The information level number related to the 
process is  the number of square boxes used as 
input information to the argument equation 
(number of red boxes in the MAD).    

 

 
Figure 1: General MAD scheme 

The MAD graph indicates the explicit 
relationships between the relevant input variables 
needed by model to reproduce the output 
variables (the black arrow that connects the 
boxes in Figure 1). 

The MAD graph makes no explicit statement 
about the specific mathematical relationship 
between the variables (i.e., if the model is linear 
or nonlinear). The physics must be consider at 
this point. The system being studied must be 
synthesized to reduce all conservation equations 
to (1), where all variables and parameters and 
their connections are well identified. 

This methodology provides for classification of 
all relevant parameters and variables for the 
mathematical model. 

For each MAD a fixed number of information 
levels must be assigned. For the air pollution 
transport and dispersion mode the argument 
equation is quite intricate and the complete MAD 
involves up to seven information levels (not 
shown here). 
 
4. MAD scheme for photochemical reaction of 
Ozone in atmosphere 

For the photochemical production of NO2, the 
maximum information levels is assumed to be 
three. These reactions are activated by solar 
radiation, temperature and involve NO, O3 and 
NO2 pollutants 

In urban areas, photochemical reactions 
involve the production of NO2 by the O3 and NO2 
pollutants (Seinfeld et al. (2012)). The reaction 
usually takes place on sunny days with high air 
temperatures.   

In Figure 2 the MAD scheme for the first 
information  level are shown. This first information 
level (L1) corresponds to the minimum 
information level to simulate the production and 
depletion of O3 by NO and NO2.  

 

 

Figure 2: MAD scheme First-level MAD  (L1) 

At this first level, the MAD for O3 is only 
obtained by providing NO and NO2 
concentrations. For the regression model, all 

parameters 1…p are constant and fixed during 
training (i.e. consistent input dataset) 

For the NN model, the 1…p  parameters are 
coincident with synaptic weights linked to hidden 
neurons in the NN models.  

The argument equation for the first MAD 
scheme is:  

 
                                                       (2) 
 
At the second level of information (L2), the O3, 

obtained by the NO and NO2 concentrations, is 
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filtered by the knowledge derived from 
photochemical reactions (Figure 3). 

Such information is connected with  
K1(T,SR,RH)  and K2(T,SR,RH), where K1 and K2 
are the chemical rate connected to the 
photochemical reactions in atmosphere. 

 

 
Figure 3: MAD scheme Second-level MAD (L2) 

The values of K1 and K2 are unknown and difficult 
to obtain for an urban area. The O3 
concentrations can be reproduced by the NN 
using NO and NO2 as inputs, together with a 
proxy variable for the reaction rate parameters K1 
and K2. The latter are dependent on the observed 
air temperature, solar radiation and relative 
humidity.  
The argument equation associated MAD ( Figure 
3) is:   

     (3) 
 
 

 
Figure 4: MAD scheme Third-level MAD (L3) 

The third level of information (L3) is introduced by 
including the variable, time of day (h), which is 
associated with atmospheric stability conditions. 
It can be demonstrated that an averaged value of 
Monin Obukhov length L can be associated with 
each hour of the day (h) (Pelliccioni et al. (2012)). 
The MAD scheme (Figure 4) linking the variables 
is the equation: 

         (4) 
 
The analysis of the hour as an input variable to 
the NN can usually proceed in either of two ways. 
First, using a direct variable, hour of day, without 
any transformation (one dimensional analysis - 
1D). Second, by employing a sine-cosine 
transformation of the hour variable (h)  to account 
for diurnal-nocturnal cycles (two dimensional 
analysis - 2D). In this work, we operate with a 1-
D analysis. 
 
5.  Dataset description 
In Figure 5 shows  the network of  ozone 
monitoring stations in Rome. We use data from 
the station called Villa ADA (VAD), which is 
classified as a background monitoring station 
(yellow circle in Figure 5). The data are collected 
hourly and we use data from the full year period 
of 2006. 
Pollutants concentrations measured at VAD 
include: Ozone (O3), Nitrogen oxide (NO) and 
dioxide (NO2), carbon oxide (CO) and total 
particulate matter and ultrafine particulates 
(PM10 and PM2.5 respectively). The 
meteorological variables measured include 
relative humidity (RH), solar radiation (SR), 
temperature (T), wind speed (WS) and direction 
(WD) and pressure (P). The total number of 
variables measured is 12. Adding the exogenous 
variable, hour of day (h), brings the total to 13. 
This number represents the maximum 
information or data available at the VAD station.  
The three levels of the MAD scheme correspond 
with following percentage of input data, or 
information level (IL): 
 

L1 2/13 15% of IL   (5) 
 

L2 5/13 38% of IL   (6) 
 

L3 6/13 46% of IL   (7) 
 
Here, we have tested a fourth simulation (named 
ALL), where the Rain (R) and wind speed (WS) 
are added to L3 variables. 
For this simulation, the percentage  of data 
corresponding to the ALL simulation is  equal to 

8/13 61%.  
The final classification as  suggested by the MAD 
analysis are the following: 
 
L1    O3(NO,NO2)   (9) 
 
L2    O3(NO,NO2,T,RH,SR)  (10) 
 
L3    O3(NO,NO2,T,RH,SR,h)  (11) 
 
ALL O3(NO,NO2,T,RH,SR,h, WS,R) (12) 
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The data was divided in two groups. The training 
dataset (comprised of 60% of randomly selected 
data) and the test dataset (comprised of the 
remaining 40% of total data). We use a multilayer 
perceptron (Gardner et al. (1998), Pelliccioni et al. 
(2006)) with 10 and 12 hidden neurons for the NN.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Rome monitoring stations 
 
6.0  Results and discussion 
We examine the results from the test dataset (see 
above). We describe  the results  for applying both 
linear regression and neural network models.  
We explain the model performance by splitting 
the ozone concentrations in three ranges: 

-  Lower range: ozone observations under 
50 mg/m3. 

- Middle range: ozone observations 

between 50 and 100 g/m3. 
- Upper range: ozone observations greater 

than 100g/m3. 
 
 

6.1 Linear regression results 
Figure 6 compares the observed and modelled 
ozone for all input information (L1, L2, L3 and 
ALL) using the regression model.  
 

 
Figure 6: Modeled ozone against observed by  
L1, L2, L3 and ALL simulations: regression model  
 
If we concentrate our attention in the middle 
range(red line in Figure 6), the L1 cases 
underestimate the observed (see Table 1).  

The increase of information improves the 
observed ozone in the middle range when using 
the regression model (going from left to right in 
Table 1).  
The L3 simulation is the best (average 

O3lin(L3)=67.5±16.9g/m3 as compared to the 

observed  O3meas=74.4±14.8 g/m3 - see Table 
1). 
  

 
Table 1: average measure ozone in the middle 
range. Comparison with regression model results 
for different information levels. 

For the upper range of observations, all 
simulations show a worse behavior. The linear 
models doesn’t succeed in forecasting higher 

ozone values (O3lin(L1-L3)= 70.9÷79.3g/m3 
compared to the observed  O3meas=122.5±21.0 

g/m3 - see Table 2). 
 

 
Table 2: average measure ozone in the upper 
range. Comparison with regression model results 
for different information levels 
 
For the lower concentration range (observed 

under 50g/m3), the linear models produce an 

overestimation (O3lin(L1-L3)= 29±25g/m3 as 
compared to the observed  O3meas=14.2±15.4 

g/m3 - see Table 3). 
Furthermore, no significance values of the 
correlation between the model and observations 
is obtained (yellow dashed line in Figure 6). 
 

 
Table 3: average measure ozone in the lower 
range. Comparison with regression model results 
for different information levels. 

The ALL simulation does not  improve the 
performance at all with respect to L1-L2 and L3. 
Table 4 indicates a flat behavior for R-squares 
starting from the L2 simulation.   
 

 
Table 4: L1, L2, L3 and ALL simulations.  R-
squares values by regression model for overall 
dataset.  
 
Table 5 reports the average negative values 
using the  linear models (all points under black 
dashed line in Figure 6). The negative values 
decrease with increasing values of input 



information (from the value of -17.0g/m3 for L1 

up to -15.4g/m3 for the ALL simulation).   
  

 
Table 5: average regression modelling ozone for 
negative contribution. Comparison with 
observations and information levels. 
 
6.2 Neural Network results 
Figure 7 compares simulations trained using a 
neural network model. Improvement over the 
linear models is evident.  
 

 
Figure 7:  Modeled ozone against observed by  by 
L1, L2, L3 and ALL simulations: neural network   
 

Table 6 reports the average predicted values in 
the middle range. The modeled ozone values 
provide very good predictions. The observed 

ozone is O3NN
meas=74.0±14.5g/m3 when the NN 

model produces about 72 g/m3.  
  

 
Table 6: average measured ozone in the middle 
range. Comparison with NN model results for 
different information levels. 

The results for the upper range are reported in 
table 7. The observed ozone values 

(O3NN
meas=121.7±21.1g/m3) are slightly 

underestimated by the neural network (O3NN
model  

increase starting from 87.3 g/m3 up to 

93.0g/m3 for ALL).   
It is worth noting that the L3 and ALL simulations 
predict quite similar levels. This fact indicates no 
improvement due to adding the new variables 
from MAD scheme. While the performance of the 
MAD scheme seems to be insensitive to the 
choice of input information for linear models, the 
neural network appears to be much more 
sensible to the input data defined by the MAD 
scheme. 

The NN advantages are particularly evident in 
the lower range simulation (Table 8).  
 
 

 
Table 7: average measured ozone in the upper 
range. Comparison with NN model results for 
different information levels. 

 
Table 8: average measure ozone in the lower 
range. Comparison with NN model results for 
different information levels. 

The negative values as computed by the NN 
model (Table 9) are much better than by the linear 
model (see Table 5).  In fact, we have found an 

underestimation of ozone between -4.3g/m3up 

to -6.9g/m3. (against the measured values 

between 1.9g/m3 up to 3.4g/m3).  
The ALL simulation produces higher  negative 

values (about -7g/m3) respect to L3 simulation. 
 
 

 
Table 9: average NN modelling ozone for 
negative contribution. Comparison with 
observations and information levels 

 
Significant results are also evident in the R-

square coefficients for the different simulations 
(L1, L2, L3  and ALL-see Table 10).  

 

 
Table 10: L1, L2, L3 and ALL simulations.  R-
squares values by NN model for overall dataset.  

 
6.3 Discussion  

We have confirmed that prediction of ozone for 
urban area is best reproduced by using non-linear 
models. 

The application of the  MAD scheme to select 
data is always efficient, independently by the 
assumed information. From the results of the  ALL 
simulation, not all of the information added to a 
MAD scheme enhances the performance. 

 
The selection of input data using equations (2), 

(3) and (4) can be considered a winning strategy 
for forecasting the behavior of the photochemical 
reaction in the urban area of Rome.  

 
 
 



7. Conclusion  
The MAD analysis provides a conceptual 

model for the optimization of input variables to 
reproduce target data (e.g., Ozone) by neural 
networks or regression models.  

For modeling photochemical reactions of air 
pollution, the MAD analysis demonstrates the 
necessity classifying model inputs in information 
levels. The analysis of the MAD scheme for the 
photochemical production of ozone suggests 
three information levels (L1, L2 and L3) is 
appropriate. 

We have also tested the inclusion of the 
variables external to photochemical smog (as in 
the ALL simulation) to verify the the MAD choice. 

We find that  introducing the exogenous time 
variable (named h) into the NN, provides useful 
information. The variable h can be linked with the 
Monin- Obukhov length. Here we use a one 
dimensional transformation for (h).   

The new time variable improves the accuracy 
of the NN with respect to a MLR model as well as 
the performance with respect to the utilization of 
the typical reactants for ozone production (NO-
NO2) and to the physical conditions (T,RH,SR). 

The MAD analysis demonstrates, for the 
evaluation of photochemical reaction of air 
pollution, the necessity of classifying input 
information into three levels. The results show 
that model performance increases with increasing 
amounts of input  information.  Adding new 
information (as in the ALL formulation) does not 
produce any significant increase in  performance 
for the L3 level input data. 
The MAD analysis focuses on the optimal data 
selection. Our preliminary results demonstrate 
that model  performance is linked to a correct 
choice of input data associated with the physics 
rather than with variables chosen by blind 
statistical  selection. 
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