

Quantitative Decomposition of Radiative and Non-radiative Contributions to Temperature Anomalies related to Siberian High Variability

Tae-Won Park¹, Jee-Hoon Jeong², Yi Deng³, and Ming Cai⁴

¹Department of Earth Science Education, Chonnam National University, Gwangju, South Korea ²Department of Oceanography, Chonnam National University, Gwangju, South Korea ³School of Earth and Atmospheric Science, Georgia Institute of Technology, Atlanta, Georgia. USA ⁴Department of Meteorology, Florida State University, Tallahassee, Florida, USA

Sensible/Latent Heat fluxes

(b) Latent Heat flux

0.4 0.8 1.2 1.6

-0.8 -0.4 0

(a) Sensible Heat Flux

and weak Siberian High winters.

strong and weak

Siberian High winters.

Differences of (a) vertically integrated cloud water content (units: kg/kg), (b) surface cloud forcing (units: W m⁻²), (c) surface shortwave cloud forcing (units: W m⁻²), and (d) surface longwave cloud forcing (units: W m⁻²) between strong and weak Siberian High winters.

Acknowledgments: This research is sponsored by the Korea Meteorological Administration Research and Development Program (KMIPA2015-2091).

