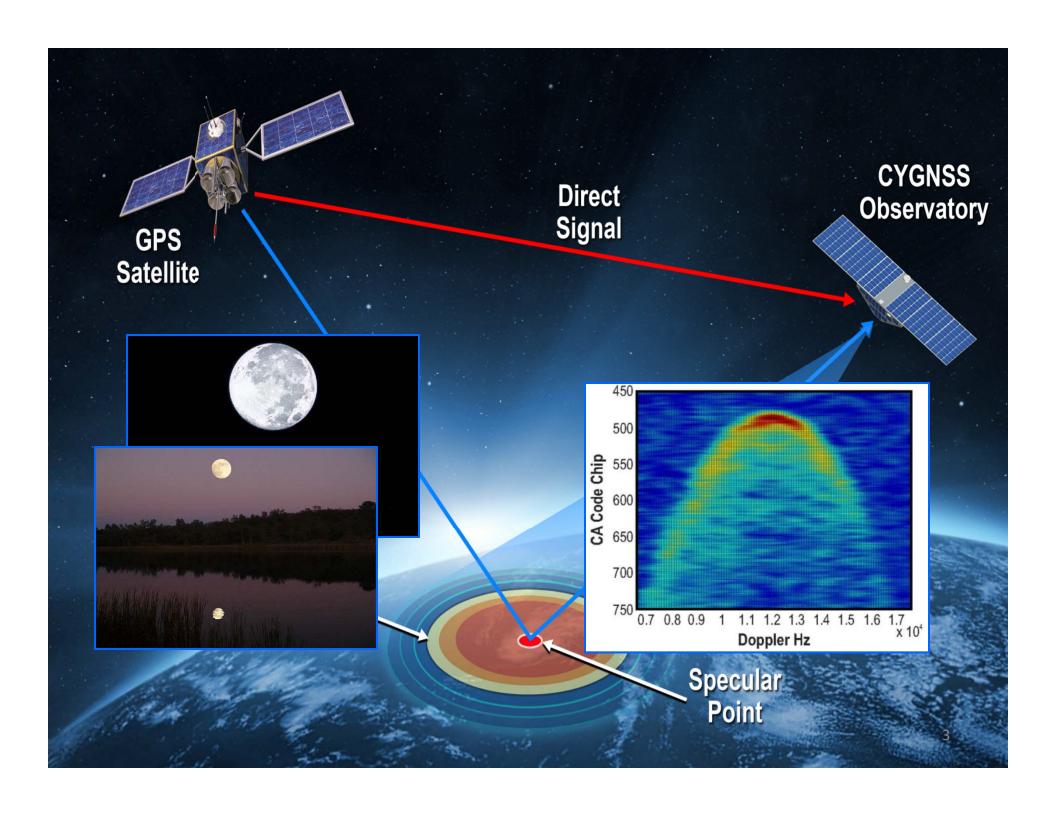
AMS Annual Meeting

21st Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans and Land Surface Seattle, WA, 22-26 January 2017

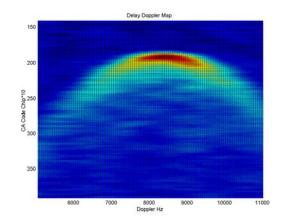
The NASA CYGNSS Satellite Constellation for Tropical Cyclone Observations

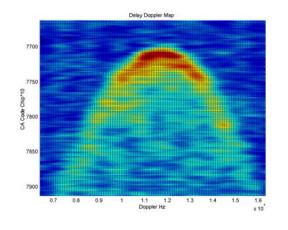
<u>Chris Ruf</u>¹, Robert Atlas², Paul Chang², Maria-Paola Clarizia¹, James Garrison³, Scott Gleason⁴, Steve Katzberg⁵, Zorana Jelenak², Joel Johnson⁶, Mary Morris¹, Sharan Majumdar⁷, Andrew O'Brien⁶, Derek Posselt⁸, Damen Provost¹, Aaron Ridley¹, Randy Rose⁴, Faozi Said², John Scherrer⁴, Golf Soisuvarn², Valery Zavorotny²


1. University of Michigan, Ann Arbor, MI; 2. NOAA, College Park, MD; 3. Purdue University, West Lafayette, IN; 4. Southwest Research Institute, Boulder, CO; 5. NASA, Langley, VA; 6. Ohio State University, Columbus, OH; 7. University of Miami, Miami, FL; 8. NASA JPL, Pasadena, CA

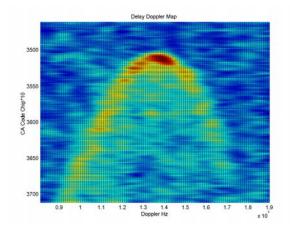
CYGNSS Mission Overview

- The NASA Cyclone Global Navigation Satellite System (CYGNSS) Mission consists of 8 microsatellites, each with a 4-channel GPS bi-static radar receiver
 - Mission lead/Science Ops (University of Michigan)
 - Spacecraft/Integration/Mission Ops (Southwest Research Institute)
- The driving science objective is rapid sampling of ocean surface winds in the inner core of tropical cyclones
- CYGNSS uses a new measurement technique and a new satellite mission architecture
 - Measure the distortion of GPS signals scattered from the ocean surface to determine ocean surface roughness and wind speed
 - Use small satellites so many can be flown to improve sampling




CYGN8S

Spaceborne Empirical Demonstration of Ocean Wind Speed Retrievals by GNSS-R

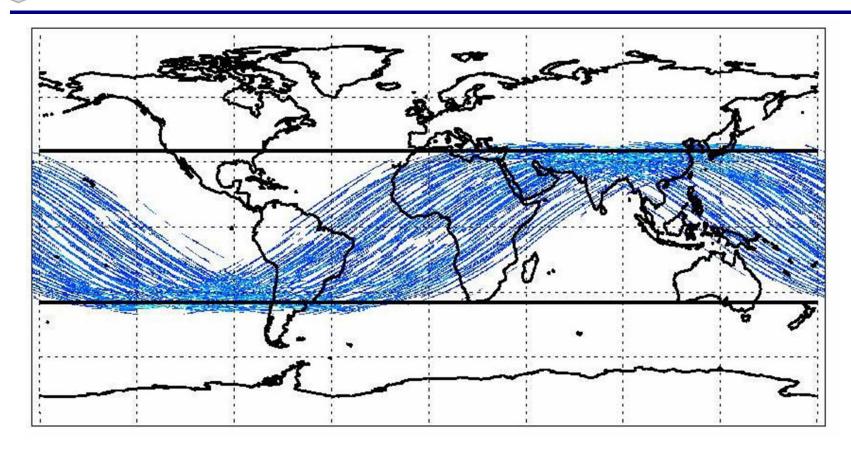

GNSS-R instrument (early version of CYGNSS science payload) deployed on UK-DMC-1 mission, launch 2003

Winds 7 m/s

Winds 10 m/s

Level 1 Baseline Mission Science Requirement

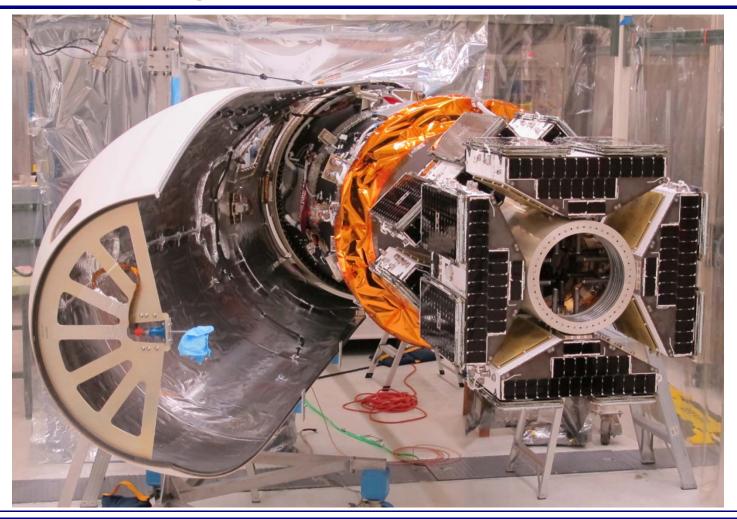
Sci Rqmt #	Requirement
1	3 m/s to 70 m/s at 5 km x 5 km resolution
2	Operation in presence of rain
3a	10% retrieval uncertainty for winds > 20 m/s
3b	2 m/s retrieval uncertainty for winds < 20 m/s
3c	Spatial Resolution of 25 km x 25 km or better
4a	100% duty cycle during science operations
4b	Mean temporal resolution less than 12 hours
4c	24 hour spatial sampling covering 70% or more of the cyclone historical track
5	Calibrate and validate CYGNSS data in individual wind speed bins above and below 20 m/s
6	Support operational hurricane forecast community



CYGNSS Spatial Sampling Over 24 Hours

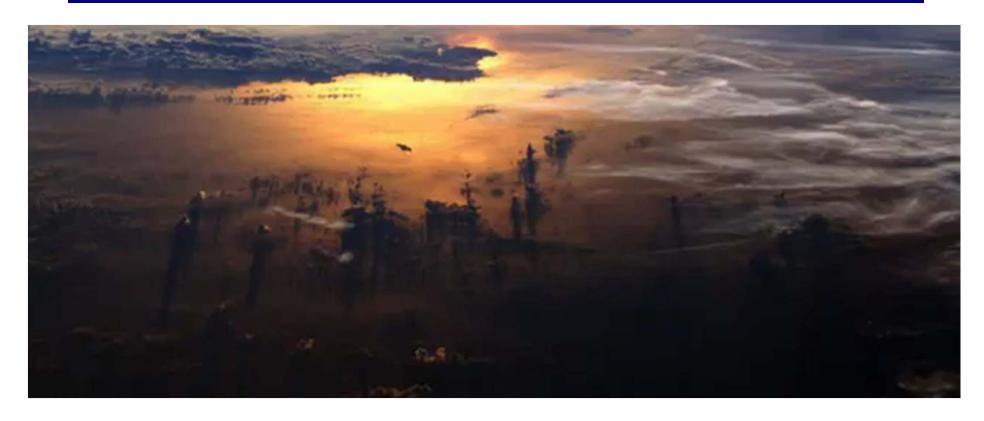
• Revisit time: 2.8 hr (median), 7.2 hr (mean)

Observatory Fabrication and Testing



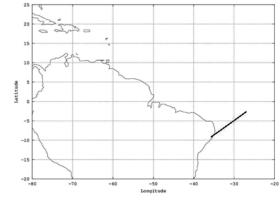
All 8 Observatories Integrated with Pegasus Launch Vehicle

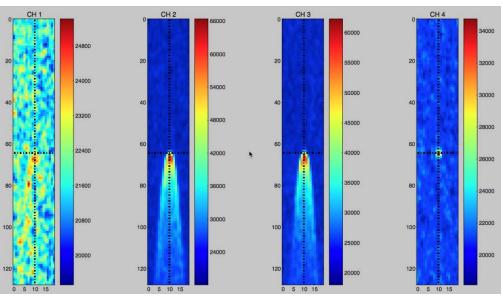
Pegasus Installed on L-1011 Aircraft



Observatory Separation

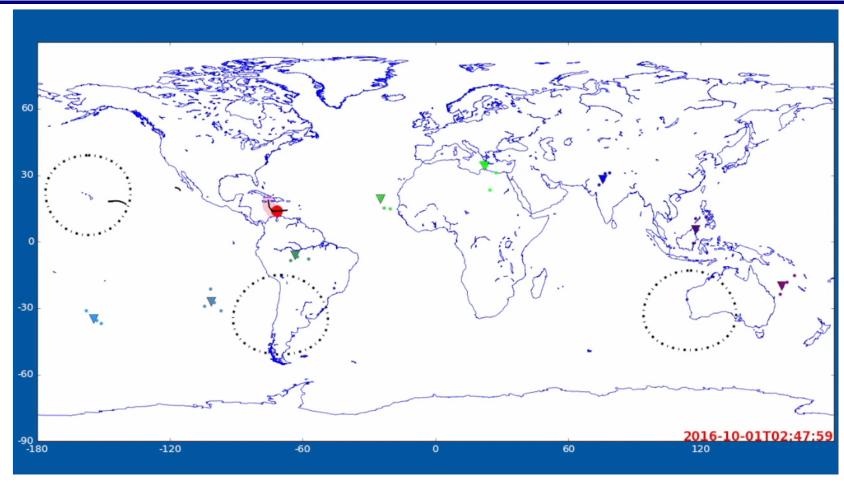
(simulation)





CYGNSS "First Light" Science Data

- The first CYGNSS science instrument was turned on while spacecraft FM03 was crossing the eastern coastline of Brazil on 4 January 2017.
- First Light Delay
 Doppler Maps
 (DDMs) measured
 during 4 Jan 2017
 coastal crossing. CH1 3 are ocean
 reflections. CH4 is
 land reflection.



Storm Intersection Forecast Tool Hurricane Matthew Simulation

CYGNSS Mission Status and Plans

PAST

- 5 Dec 2016 at 08:37 EST: Launch
 - Observatories in "safe mode", sun-pointed with only essential systems powered on
- 16-23 Dec 2016 : Transition to "Engineering Mode"
 - Non-essential systems tested (including navigation portion of science payload), still sun-pointed

PRESENT

- Transition to nadir-pointed engineering mode underway
 - First light science data 4 Jan 2017
 - Two observatories currently nadir-pointed; two sun-to-nadir transitions planned for week of 23 Jan 2017

FUTURE

- Mid Feb 2017: begin "Science Mode" with continuous DDM data taking
- Feb Apr 2017: Initial cal/val of Level 1 DDM calibration and Level 2 wind speed retrieval algorithms
- Mid Apr 2017: First public release of DDM and wind speed data products to NASA PO.DAAC
- Dec 2017 Feb 2018: Cal/Val with 2017 Atlantic hurricane season ground truth

More CYGNSS at AMS Annual 2017

Tuesday 24 Jan

Regional Observing System Simulation Experiments (OSSEs) for Hurricanes Location: 607 (Washington State Convention Center)

- 10:30 AM 5.1 Creating Vector Winds from Simulated CYGNSS Ocean Surface Wind Speed Retrievals Using Variational Analysis, Mark Leidner
- 10:45 AM 5.2 Impact of Simulated CYGNSS Ocean Surface Winds on Tropical Cyclone Analyses and Forecasts in a Regional OSSE Framework, Bachir Annane
- **14:30** NASA Hyperwall CYGNSS

Wednesday 25 Jan

- 10:15 NASA Hyperwall CYGNSS
- **2:30-4:00pm**, Poster Session 1
 - 1000 Assessing CYGNSS Tropical Cyclone Wind Field Products Before Launch, Mary Morris
 - 1001 Assimilation of CYGNSS Ocean Surface Winds in HWRF, Mark Leidner
 - 1002 Using CYGNSS to Observe Convectively Driven Near-Surface Winds in Tropical Precipitation Systems during Madden-Julian Oscillation Events, Tim Lang
 - 1003 Utilizing CYGNSS Near Surface Winds to Improve Surface Sensible and Latent Heat Flux Estimates, Juan Crespo
 - 1431 Assimilation of CYGNSS and GPM satellite data for improving hurricane forecasting, Zhaoxia Pu

Thank You

for more information visit http://cygnss-michigan.org

or contact Chris Ruf, cruf@umich.edu