Reflections on the big data thematic

Lothar Wolf
Competence Area Manager for Data Services
Lothar.Wolf@eumetsat.int
The “Big Data” topic is one of the most heard buzz words within today's IT and Data community. This presentation reflects on some aspects of the big data hype and addresses some key issues as they are perceived by the data providers and the users. An important aspect in this discussion is the notion that users often need data in order to get answers to their questions – which is not a new issue as such however, in the big data era the generation of such answers is also due to the exponential growth of the base data representing a significant challenge for creating the most important aspect: the value. Furthermore the simple existence of such amounts of data together with new science and tools, data mining, data analytics & correlations allow the generation of questions that were not even thought about in the beginning.

The question is on how this could be supported and to what extend by the Data providers and others.

An overview is presented on how EUMETSAT considers those aspects within the context of its existing operational data services but also their big data related evolutions. In this context the different models of data delivery (push – pull & Near-Real-Time – online/offline) are discussed and the bridge a data provider might build in order to make steps towards the user for easier access to the actual information the user requires.
EUMETSAT is an intergovernmental organisation with 30 Member States and 1 Cooperating State.

Member States

- Austria
- Belgium
- Bulgaria
- Croatia
- Czech Republic
- Denmark
- Estonia
- Finland
- France
- Germany
- Greece
- Hungary
- Iceland
- Ireland
- Italy
- Latvia
- Lithuania
- Luxembourg
- The Netherlands
- Norway
- Poland
- Portugal
- Romania
- Slovak Republic
- Slovenia
- Spain
- Sweden
- Switzerland
- Turkey
- United Kingdom

Cooperating States

- Serbia
EUMETSAT Mission

- To establish, maintain and exploit European operational meteorological satellite systems, while considering the recommendations of WMO as much as possible
- A further objective is to contribute to operational climate monitoring and detection of global climatic changes
- By fulfilling these objectives, contribute to environmental monitoring, where interactions with the ocean and the atmosphere are involved
- Deliver cost-effective operational satellite data and products that satisfy the meteorological and climate data requirements of its Member States
- Encourage more users to benefit from the increasing range of EUMETSAT data and products
Areas benefitting from weather forecasting

Safety of life, property and infrastructure

Transport

Energy, agriculture, tourism

Climate policy and environment protection
Current EUMETSAT satellites

METOP-A (98.7° incl.)
EUMETSAT POLAR SYSTEM
In nominal mid-morning sun synchronous orbit at 817km altitude, as part of the EUMETSAT Polar System (EPS).

JASON-2 (66° incl.)
OCEAN SURFACE TOPOGRAPHY
In nominal non-synchronous low Earth orbit at 1,336km altitude, in support of the Ocean Surface Topography Mission.

METOP-B (98.7° incl.)
EUMETSAT POLAR SYSTEM
In orbit at 817 km altitude, the primary operational satellite of the EUMETSAT Polar System (EPS).

METEOSAT-7 (57.5° EAST)
INDIAN OCEAN DATA COVERAGE
Operated in support of the Indian Ocean Data Coverage (IODC) mission, bridging an observational gap in this region.

METEOSAT-10 (0°)
METEOSAT FULL DISC IMAGERY
Positioned at 0° supporting the prime Meteosat full disc imagery service over the European continent, Africa and parts of the Atlantic and Indian oceans.

METEOSAT-9 (9.5° EAST)
RAPID SCANNING SERVICE (RSS)
Provides the Rapid Scanning Service (RSS) delivering more frequent images every five minutes over parts of Europe, Africa and the adjacent seas.

METEOSAT-8 (3.5° EAST)
BACKUP SERVICE
Serves as a back-up to both the Meteosat-9 and -10 spacecraft for full disc imagery and rapid scanning.
MTG – Overall system configuration

- **MTG-1**
 - RAPID SCAN SERVICE

- **MTG-S**

- **MTG-1**
 - FULL SCAN SERVICE

TELEMETRY, TELECOMMAND AND CONTROL

- GROUND STATION SITES

MISSION DATA ACQUISITION

- GROUND STATION SITES

EUMETSAT

- CORE GROUND SEGMENT
 - Satellite Control Centre
 - Mission Control Centre
 - Product Processing Facilities
 - Data Centre Archive
 - Data Dissemination via EUMETCast

Search and Rescue Beacons

Search and Rescue Mission Control Centres

Data Collection Platforms

Direct reception by users in all countries

EUMETSAT Network of Satellite Application Facilities (SAFs)

External data sources
EUMETSAT mission planning

Only the full operational phase of each mission is represented, excluding commissioning.

* MSG-4/Meteosat-11 will be stored in orbit, before replacing Meteosat-10
• Copernicus is an EC programme aiming to achieve an autonomous, multi-level operational Earth observation capacity

• PART OF THE COPERNICUS MANDATE IS TO USE DATA FROM METEOSAT, METOP AND JASON-2 OPERATIONAL SATELLITE SYSTEMS ESTABLISHED, MAINTAINED AND OPERATED BY EUMETSAT.

• OPERATION OF COPERNICUS-DEDICATED MISSIONS ON ATMOSPHERE AND OCEANS FALLING WITHIN EUMETSAT’S MANDATE I.E. THE SENTINEL-3 MARINE MISSION AND THE JASON-3 AND JASON-CS MISSIONS OF THE COPERNICUS HIGH-PRECISION OCEAN ALTIMETRY (HPOA) ACTIVITY.

• PLANNING, DEVELOPMENT AND INTEGRATION INTO FUTURE EUMETSAT SYSTEMS OF COPERNICUS MISSIONS DEDICATED TO ATMOSPHERIC CHEMISTRY (SENTINEL-4 AND MTG; SENTINEL-5 AND EPS-SG), AND THEIR EXPLOITATION IN FULL SYNERGY WITH EUMETSAT’S OWN MISSIONS
Copernicus

• MAKING OPTIMAL USE OF THE EUMETSAT MULTI-MISSION INFRASTRUCTURE IN THE COPERNICUS FRAMEWORK, INCLUDING THE EUMETCAST REAL-TIME DATA DISSEMINATION SYSTEM, EUMETSAT EARTH OBSERVATION PORTAL AND ITS ARCHIVES.

• DELIVERY TO THE COPERNICUS PROGRAMME OF DATA AND PRODUCTS AVAILABLE FROM AND AGREED WITH EUMETSAT PARTNERS IN THE UNITED STATES, CHINA, INDIA AND JAPAN.
EUMETSAT Ground Segment

- Control and Data Acquisition
- Flight Operations
- Pre-processing
- Data Centre
- Meteorological Product Extraction
- Satellite Application Facilities
- Real Time Dissemination of Data and Products via Eumetcast
- Applications Ground Segment
- Users

INITIAL JOINT POLAR SYSTEM
- METOP
- NOAA SATELLITES
Reflections ...

- "Big Data"
- Hype cycle
- Use cases
- Push
- Pull
- Standards
- Interoperability
- Discovery
- Search
- Registration
- Fees
- Cost
- Resources
- Information
- Large Data

- User
- Provider
- Added value
- Question
- Result
- Infrastructure
- Evolution
- Access
- Subscription
- Archive
- Replication
- Data Object Identifier
- Processing
- Data mining

- User algorithms
- Added value service
- Public Service
- Catalogues
- Operations
- Research
- Delivery
- Retrieval
- Diversity
- Scalability
- Reliability
- Mission
- Bridge
- Value
Total system output per day:
- Currently over 4000 NRT users worldwide
- Today’s NRT output is approx. 60Mbit/s = approx. 646GB/day per user ➔ approx. 256 TB/day aka 90PB p.a.
- With MTG in 2020 this would be approx 150Mbit/s = 1.6TB/day/user ➔ approx. 6.48PB/day
- Currently approx 7000 LTA users (pa) worldwide
- In 2016 2.5PB data delivery
Is The situation a “new Problem”?

? ... Data ...
Algorithm ...
Information ...
Answer ...
Value

- Distributed data sources
- Heterogeneous data access functions & services
- Data delivery as well as data retrievals
- Large data volumes
- Information generation at the user end
When does Data become “Big Data”?

? ... Data ... Algorithm ... Analytics ... Correlation ... Information ... Answer ... Value
Is it the main “job” of a user to search for data?

Search and Discovery are just the first step ...

One-stop shop user experience is key

Exploitation of the individual strengths of each data provider by systematic use of interoperability standards for Meta data, Search & Discovery
Bringing Data to the User – Delivery Models ...

Pull model
- Off- & On-line, interactive, time series
- Bespoke and/or user defined data areas of interest
- Typically without guaranteed service levels
- User infrastructure dependent

Push model
- Data driven
- To the doorstep
- Continuous delivery of new data
- Typically guaranteed service levels
Bringing Data to the User ... The element of timeliness

Near Real Time world
- Push model, Fast, current, to the doorstep
- Operational users
- Continuous delivery of new data & products & data sets
- Typically guaranteed service levels

The “grey zone” in between
- Pull model
- Faster and easier than offline
- Interactive
- Added value & bespoke hosted functions/processing (i.e. sub-sectioning, re-formatting etc.)
- Service interface

Offline world
- Pull model, Orders, time series
- Specific formats
- Non-time critical and typically without SLA
- Media delivery
Some users want an **answer to a question** rather than the data
 - Information & Analytics instead of pumping base data
 - Benefit: Users won’t require infrastructure to handle large amounts of data

Many projects => many data islands
 - New projects create more islands

Information Location is key for answering questions
 - Responsiveness to evolving user needs
 - Post-processing services cannot afford to retrieve data from islands
 - Copying of data has impact on network, storage and compute resources
 - Very similar needs for internal and external users

=> Bring the users to the data **in addition** to traditional data-to-users
 (which is what information centric organisations have done)
Changes in the environment ...

New and emerging needs and opportunities:

➔ Change in user needs & expectations – more frequent, localised, personalised, integrated, cross-sectoral information and services
➔ Next generation satellite missions and sensors
➔ Interoperable infrastructure and services
➔ New available technology
Bringing Users to the data ... VALUE generation

Question → Data → Algorithms → Analytics & Correlation → Information → Answer → VALUE

- Data providers awareness of the information potential and science that is perceived to be obtained from the base data
- Provision of added services (algorithm processing) on the “base” data to allow easier information extraction
- Interconnect Data access across different Providers via Interoperability as the base for data analytics & correlation of diverse data sets
- Manage and interact with the user communities
- Develop services in the “grey zone”
Bringing Users to the data ... VALUE

• Value is the most important 'V'
 → Unused or unusable data delivers little value but still incurs costs

• Generation of value due to the existence of big data, new science, new tools, data mining, data analytics and correlations, allowing to generate previously unknown questions.

• Value lies in fitness-for-purpose
 → To meet new user needs – products, scale, timeliness, detail, content
 → To ensure our information and services are useful, useable and used
 → To support new policy and research goals
 → To verify and demonstrate that user needs are being met

(Example: Tee Shop)
Big challenge and big opportunity of data → to extract value through insight from data
From linear to Cyclic Service Evolution ...

- Maintaining pace with user expectations and capabilities
 → Demand for more timely, more detailed, more interactive information and products

- Changing paradigms
 → Collaboration and partnership
 → Evolving from a linear production model to a cyclic interacting model
 → “*” as a Service aka general service orientation and interoperable services including constant user feedback
Opportunities & Building the “bridge” ...

Data Provider builds a “Bridge” for the User by:

→ Understanding what data means to your organisation
→ Capturing opportunities
→ Managing risks
→ Making well-informed choices
→ Using WMO, EC, CBS, ... resources
→ Learning from experiences of others
→ Looking around and ahead – at trends in technology and those who use it well
Opportunities & Building the “bridge” ...

- Highly Interactive User communities engagement process
- Enabling easy and homogeneous access to the data
- Preparing the data
- “Processing @ the data concepts
- Diversity of delivery mechanisms
- Harmonised access to push & pull models
- Efficient use of supporting technologies
- Understanding and translation of a variety of data policies
EUMETSAT Data Services
Recognising the scope → new Data Services Strategy

- One fits all is not the right approach - push & pull is needed as well as “bringing data to the users” & “bringing users to the data”

- Fully service oriented approach based on cyclic user interaction

- Big Data and associated technologies raise also questions on: Privacy, IPRs, User credentials, IT Security
 - “Safe harbor” concepts are booming
 - Data as a Service

- Fast developing technology supporting the big data concepts

- “Free to the user” however represents for data providers potentially substantial cost
 - New business models are possible (public services, downstream services)

- Users to the data services to avoid data islands
Definition of a new Data Services Strategy

- Implementation via a set of interconnected Pathfinders
- Strong involvement of industrial support
- 2017 Pathfinder implementation → 2018 User Validation Cycle → 2019 Operational level implementation

Information Centric Service Infrastructure

DaaS – Data as a Service, SaaS – Software as a Service, PaaS – Platform as a Service, IaaS – Infrastructure as a Service
EUMETSAT Data Services Strategy – Implementation via Pathfinder projects

1. Online Data Access Services
2. Large Volume Data Dissemination via multicast
3. Web Services (including WMS)
4. Data Format Toolbox
5. Hosted Processing
6. DIAS - EUMETSAT & Partners Platform in the context of Copernicus

→ Pathfinder projects allow highly iterative exploration in new methods, concepts and technologies in order to develop the final future Data Service portfolio specification and the associated system level architecture and requirements

→ The overall activity of all contributing projects is managed via a Framework management structure
EUMETSAT Pathfinders

- Formalized and cyclic user interaction processes
- Interoperable Service interfaces
- Re-use and integration of existing capabilities including cooperation with specialised centres

- Interoperable Data Discovery, Access & Retrieval
- Diverse Delivery mechanisms addressing diverse use cases (NRT, Online, Offline) with equal service delivery to users
- Data as a Service (Data to the user & User to the data)

- Hosted processing & platform services
- Online Data Access Services
- Interactive Web Services (WMS etc.)

- Evolution of the related data policies
- European partner cooperation
- Support of value generation
EUMETSAT Implementation Logic & Timeline

OLDA

Large Volume Data delivery

Web Services

Toolbox

Hosted Processing

ICSI Versions

- Architecture Checkpoint
- Design Review
- Readiness Review

DIAS – EUMETSAT & Partners Platform Versions

- Procurement possibility

Operational Level Implementation

- Final Service Specification & System Requirements Review
- Procurement possibility

Versions

- 2017: Development
- 2018: User validation and iteration
- 2018 - 2020: Procurement possibility

- User validation and iteration

- Procurement possibility

- Final Service Specification & System Requirements Review
Questions?