

JASMIN (STFC/Stephen Kill)

The JASMIN Data Analysis Facility for the Environmental Sciences Community and the Role of Data-as-a-Service

Session International Applications: Sharing Environmental Big Data, Part I AMS 22-26 January 2017, Seattle

Philip Kershaw⁺, Jonathan Churchill^{*}, Bryan Lawrence^{^+}, Matt Pritchard⁺, Matt Pryor⁺ (+ JASMIN and CEDA teams)

+ NCAS/NCEO Centre for Environmental Data Analysis, RAL Space, STFC; * Scientific Computing Department, STFC; ^ NCAS University of Reading

National Centre for

Earth Observation

NATURAL ENVIRONMENT RESEARCH COUNCIL

JASMIN Introduction

Data gravity associated with managed data so that users want to bring their projects to the the JASMIN environment

- JASMIN is a multi-petabyte data analysis facility for the UK environmental science community and their international collaborators.
 - Predominantly climate science and Earth observation
- A data commons: *bringing the compute to the* [managed] *data* paradigm
 - Managed data analysis ready: Big Data Value 'V'
- A response to the challenges of Big Data encountered in this and other research domains.
- In operation since 2012
- Over 1000 registered users
- Hosts CEDA data centres supporting 30k users

ATURAL ENVIRONMENT RESEARCH COUNCIL

ATURAL ENVIRONMENT RESEARCH COUNCIL

European contribution to HiresMIP alone is expected to exceed 2 PB

Sentinel missions data rate: ~6PB/year

National Centre for Atmospheric Science ATURAL ENVIRONMENT RESEARCH COUNCIL

National Centre for Earth Observation NATURAL ENVIRONMENT RESEARCH COUNCIL

- Data access and data access services -Data-as-a-Service - are critical to Bring *compute to the data* paradigm
- Ideally, data access should be both performant and ubiquitous for applications consuming them.
- Growth of data and of the user community supported is driving change in how data access is implemented.
- There are two key factors for consideration:
 - the network architecture enabling performance and isolation
 - the interfaces used to access data.

Centre for Environmental Data Analysis

An e.g. of data access scenarios: ESA Climate Change Initiative and JASMIN

Sea Surface Temperature CCI Contact: Dr Owen Embury (University of Reading)

CCI Open Data Portal hosted on JASMIN's cloud

National Centre for Atmospheric Science TURAL ENVIRONMENT RESEARCH COUNCIL

National Centre for Earth Observation NATURAL ENVIRONMENT RESEARCH COUNCIL

- JASMIN enables a continuous chain from:
 - ECV (Essential Climate Variable) production – with Lotus batch compute
 - Curation: ~180TB on parallel FS
 - External dissemination: Portal and download services hosted on JASMIN cloud
- *Lotus* batch compute:
 - Sea Surface Temperature: scientists can generate 30+ years of datasets in just a few days, rather than months or years.

Centre for Environmental Data Analysis

Data-as-a-Service: Example 1 – Data Transfer Zone

- Dedicated *Data Transfer Zone* (DTZ) outside the institutional firewall ۲ for WAN data movement.
- This is based on the ESnet concept of a "Science DMZ" ullet
- Experience with CMIP5 and other large projects has demonstrated the need and value
- The DTZ concept is now being extended for download services for ۲ all classes of user.
- This pattern is being piloted for the deployment of ESGF (Earth System Grid Federation) software,
 - Data download services hosted in the DT7
 - Web portals and web services deployed in the private cloud environment where they can be more easily administered.

Centre for Environmental Data Analysis

Application hosting on JASMIN Community Cloud

Forestry TEP and Polar TEPs hosted on JASMIN-CEMS

CCI Open Data Portal

Majic interface to Jules Land-surface model on JASMIN

NERC Environmental Workbench

Centre for Environmental Data Analysis

SCIENCE AND TECHNOLOGY FACILITIES COUNCIL NATURAL ENVIRONMENT RESEARCH COUNCIL

EOS Cloud – Desktop-as-a-Service for Environmental Genomics

OPTIRAD – JupyterHub IPython Notebook hosting

DaaS Example 2: Parallel File Systems, POSIX and Cloud

- JASMIN's community cloud allows users to provision virtual machines using an IaaS (Infrastructure as a Service) model
- But there is a fundamental incompatibility between this and parallel file systems at scale
 - Parallel file system: a global uid/gid space under a single administrative authority
 - IaaS model: multiple tenant-defined administrative authorities
- IaaS on JASMIN is segregated into an isolated network
 - full autonomy for tenants
 - access to the data archive and group workspaces via FTP and HTTP interfaces (such as OPeNDAP)

Mellanox Connect-X4 Dual port 100Gb QSFP+ DA Dell R730XD servers. VXLAN/NV|GRE and Erasure Coding offload in h/w Mellanox Dual MSN2100 16 port x 100G switch/routers

science & Technology Facilities Council Rutherford Appleton Laboratory

- Hardware
 - 100G networking
- Software parallelisation:
 - Traditional load balancing and/or
 - Container-based alternative / combination
 - Build on experience with Swarm and Kubernetes on other projects

National Centre for Earth Observation

From Parallel File Systems to Object Stores

- Motivations for using a parallel file system in the first place were:
 - 1) performance for massive data handling, and
 - 2) ease of management for petascale storage.
 - → These are requirements for any successor technology
- Object store potential benefits:
 - Universal interface for access whether inside or outside JASMIN, Cloud service model or other
 - Software-defined solution: can incrementally add new h/w
 - Cost
 - interoperability with public clouds
- Object store work with JASMIN:
 - Proof-of-concept with vendors underway
 - Development of a HDF (and hence NetCDF4) server system with REST API that can be deployed over object stores as part of the European ESIWACE project

POSIX Applications and Object Stores

- How to address legacy scientific applications and their access to the file system via hierarchical directories?
- Faceted search systems such as that created for ESGF (Earth System Grid Federation)

- Built on Apache Solr

- The ESGF DRS (Data Reference Syntax) defines a set of vocabulary terms indexed from datasets which together uniquely describe it.
 - Mimic directory hierarchy
 - But allow flexible combinations of vocabulary terms to find data
- File-based Search project at CEDA
 - ElasticSearch 😓 elastic
 - Indexing the data archive (3.7 PB)

National Centre for Earth Observation

- JASMIN: data commons bring compute to the (managed) data
- Key data flows and service models
 - Bulk data transfer
 - Cloud and POSIX
 - ____

science & Technology Facilities Council Rutherford Appleton Laboratory

- Require fundamental thinking from bottom up to meet application use cases:
 - network architecture
 - Interfaces to applications
- Careful stepped approach for implementation is required
 - from deployment to full adoption for user community
- Evolution of Data-as-a-Service is necessary for scale-up for demands of Big Data and the needs of a multi-tenancy hosted computing environment.

ATURAL ENVIRONMENT RESEARCH COUNCIL

Further Information

- CEDA and JASMIN:
 - <u>http://www.jasmin.ac.uk/</u>
 - <u>http://www.ceda.ac.uk/</u>
- JASMIN paper

Lawrence, B.N., V.L. Bennett, J. Churchill, M. Juckes, P. Kershaw, S. Pascoe, S. Pepler, M. Pritchard, and A. Stephens. **Storing and** manipulating environmental big data with JASMIN. *Proceedings of IEEE Big Data 2013, p68-*75, doi:10.1109/BigData.2013.6691556

- ESA Climate Change Initiative Open Data Portal
 - <u>http://cci.esa.int/</u>
- ESNet Science DMZ
 - <u>http://fasterdata.es.net/</u>
- CEDA ESGF node
 - <u>https://esgf-index1.ceda.ac.uk/projects/esgf-ceda/</u>
- ESGF ICMWG (International Climate Network Working Group)
 - http://icnwg.es.net/
- philip.kershaw@stfc.ac.uk, @PhilipJKershaw

NATURAL ENVIRONMENT RESEARCH COUNCIL