Overview of the Tropical Cyclone Intensity (TCI) Experiment: High-Resolution Observations of Hurricanes Patricia, Joaquin, and Marty

James D. Doyle, Jon Moskalik, Joel Feldmeier, Ronald Ferek, Mark Beaubien, Michael Bell, Daniel Cecil, Robert Creasey, Patrick Duran, Russ Elsberry, Will Kamphorst, John Molinari, David Ryglicki, David Stern, Chris Velden, Xuguang Wang, Todd Allen, Brad Barrett, Peter Black, Jason Dunion, Ken Emanuel, Pat Hart, Lee Harrison, Eric Hendricks, Derrick Herndon, William Jeffries, Sharanya Majumder, James Moore, Zhaoxia Pu, Robert Rogers, Elizabeth Sandia, Gregory Trippoli, Da-Lin Zhang

Tropical Cyclone Intensity (TCI) Experiment Background

Role of Outflow in TC Intensification

- Has been relatively unexplored
- Few detailed observations of outflow layer coordinated with inner core observations

Key Science Issues

1) Document the inner-core at high-resolution, and the larger-scale outflow TC intensity change
2) Explore co-evolutionary processes
3) Understand the impact of inner core and outflow observations on TC intensity and structure predictions

NASA WB-57 Aircraft:
- Duration ~9 h, range ~2000 nm, speed ~400 kt, cruise altitude ~60,000 ft
- Based at Elington AFB; TC deployed to: i) Hartingen TX (EPAC); ii) Warner Robbins AFB, GA (WALT)
- Coordination: NASA GH, NOAA-P3, AF C-130
- C-130 deployed AUB in TROPICS

Real-Time Flight Ops Tools

NCAR EOL Field Catalog NASA Mission Tools Suite (MTS)

Joaquin Deployment Decision

- Can we define the outflow for what we observe with high-density AMVs and TCI (average 225 profiles/hr)
- TCI Ops Center at NRL (Monterey); Flight Ops Center at aircraft

- September 28, 2015: Was 1.5 hrs before the first intended science flight, for time to reposition the aircraft and personnel
- The TCI mission scientists, forecast team, aircraft team, and NASA mission control team daily to develop and act upon aircraft deployment plans
- Joaquin forecasts

Joaquin Forecasts

- Hurricane Joaquin (Oct 2-5)
- Hurricane Marty (Sep 27-28)
- Hurricane Patricia (Oct 20-24)

Real-World Observations of Hurricane Marty

- Hurricane Marty (Cat 1) intensified in the presence of moderate shear TC performed 2 missions with transects across eye and outflow
- Profiling over the inner core gravity waves, and tropopause with anomalous warm anomaly (C)

Joaquin unexpectedly underwent RI in moderate to strong shear conditions

- Hurricane Marty (Cat 1) intensified in the presence of moderate shear TC performed 2 missions with transects across eye and outflow
- Profiling over the inner core gravity waves, and tropopause with anomalous warm anomaly (C)

Patricia (Cat 5) entered the southwestern Pacific Oct 27-29
- 185 kts (poorly forecasted)
- Intensified from a TS to Cat 5 in 24 h
- Hurricane Patricia (23 Oct)

- Hurricane Patricia was mood intense TC recorded since Gyration disappeared in 1960
- Patrick was transected
- Hurricane Patricia (Oct 20-24)

- Hurricane Patricia was mood intense TC recorded since Gyration disappeared in 1960
- Patrick was transected

Summary and Future Directions

- Key Findings
 - Unprecedented set of dropsonde and HRAD observations in Hurricanes Marty, Patricia, and Tropical Storm Erika
 - ~600 dropsondes deployed in 11 WB-57 flights
 - High-resolution observations of inner core and outflow from ~60 km
 - Dropsondes & AMVs (UW) analyzed in real time (NCAR catalog, NASA MTS)
- Future Research
 - Utilize TCI observations (HHSS, HRAD, AVHRR) and high-resolution models to test hypotheses and theories on interactions of TCs and convection
 - Qualify impact of TCI data on forecasts using advanced assimilation methods

Acknowledgements

This research is supported by the Office of Naval Research (ONR, grant N00014-12-1-0153) and the NASA Science Mission Directorate (NASA SMMD) under grants NNG12GF63G (JDO on TCI), NNH15ZDA001 (ADP on TCI). The authors would like to thank the crew of the NASA WB-57 for their excellent support, as well as the UC Davis CVCRO. Acknowledgements to other investigators whose participation is not acknowledged here: collaboration with NASA SHOUT (Global Hawk) for TC outflow studies (2016) for the vital support and access to the Mission Tools Suite. COAMPS-TC® is a registered trademark of NRL.