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Thank You 
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Information Theory Perspective 
on System Identification 
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My Background 
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My Interest is the “Learning” Problem 
Models as a 

Strategy for Predicting 
Behaviors or Events 

✗ 

Models as a 
Strategy for Learning  
✔ 
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ENVIRONMENT 

MODEL 

dX t( )
dt

=U t( )−Y t( )

Y t( ) = K ⋅X t( )
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OUTLINE 
1.  Models - Dynamical Environmental Systems (DES) 

o  DES models as Tools for Scientific Investigation 

2.  Information - Its Fundamental Nature & Different Kinds 
o  Data, Models and Assumptions are different, but related, kinds of (Uncertain) Information 

3.  Learning - How Information & Uncertainty are Related 
o  Learning involves “Change”.  Can Information be “Bad” ? 

4.  Structure of Information - How DES Models Encode Knowledge 
o  Information is encoded as a Structured Hierarchy of Hypotheses 

5.  Model “Failure” - What Could Possibly Go Wrong ? 
o  Bias and Overconfidence 

6.  Inference – Learning From Our Mistakes 
o  Different kinds of model-based Learning 

7.  Maximum Entropy Approach – Injecting Rigor into Learning 
o  Dealing with Uncertainty in System Architecture & Process Parameterization 

8.  What Next? – Improving The Way We Use Models in Science 
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Models 

I 
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Dynamical Environmental System Models (DESMs) 

Working Definition:  

A DESM is a simplified representation of the structure & function of a 
dynamical system that: 

I 

1.  Enables  (a) Simulations that are acceptably accurate 
 (b) Testable Predictions under new circumstances 
 (c) Reasoning within an idealized framework 

2.  By Encoding Knowledge about  (a) Physics (conservation, thermodynamics, etc.) 

 (b) System Properties (Geometry & Materials etc.) 

 (c) Uncertainty (What we know that we don’t know) 

Why Simplified?  

a) Knowledge is Incomplete & Uncertain 

b) Real system is Infinite Dimensional 

c)  Need to “compute” in Finite Time using 
Finite Resources 
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We Use DESMs for Scientific Investigation 

 Intuitively 

We understand that “Models” & “Data” codify Knowledge 

about the World … in the form of Information 

I 

How ? 

How can I use this 
insight to improve 
my models ? 

How does 
“Learning” happen ? 
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Information 

1 

2 
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What is The Nature of Information ? 

Info is the answer to questions such as: 
When, What, Where, How, Why …  

& How Much … etc.  

1 

2 
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Information is Relational / Contextual 1 

2 Info is always “about” something 
Context Matters 

DATA is not Info … until viewed in context 

3.14 

What ? 
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Information is Relational / Contextual 

Info is always “about” something 
Context Matters 

DATA is not Info … until viewed in context 

Streamflow 
(mt3/sec) 

3.14 

1 

2 
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So Information is always “ABOUT” Something … 

Info is always about 
"  Values (Y) 
"  Relationships (R: XèY)  
"  Constraints (C) … Assumptions are a kind of Constraint 

In the Context of Model-Data Learning 

A single DATA Point encodes Info about: 
A Value of “Something” 

Y 

{Yobs} 

1 

2 
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So Information is always “ABOUT” Something … 

Info is always about 
"  Values (Y) 
"  Relationships (R: XèY)  
"  Constraints (C) … Assumptions are a kind of Constraint 

In the Context of Model-Data Learning 

p Y( )
A set of DATA Points encodes Info about: 

The Distribution of Values 

Y 

{Yobs} 

1 

2 
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So Information is always “ABOUT” Something … 

Info is always about 
"  Values (Y) 
"  Relationships (R: XèY)  
"  Constraints (C) … Assumptions are a kind of Constraint 

In the Context of Model-Data Learning 

Y D: {Xobs,Yobs} 

X 

A set of DATA Points encodes Info about: 
The space-time-ordered Relationships among 
those values 

1 

2 
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So Information is always “ABOUT” Something … 

Info is always about 
"  Values (Y) 
"  Relationships (R: XèY)  
"  Constraints (C) … Assumptions are a kind of Constraint 

In the Context of Model-Data Learning 

Y 

X 

A MODEL encodes Info about: 
The space-time-ordered Relationships 
between variables ‘behind’ those values 

R : p Y | X( )
Mapping 

1 

2 
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So Information is always “ABOUT” Something … 

Info is always about 
"  Values (Y) 
"  Relationships (R: XèY)  
"  Constraints (C) … Assumptions are a kind of Constraint 

In the Context of Model-Data Learning 

Y 

X 

A MODEL encodes Info about: 
Values p(Y|X,M) conditional on 
Relationships and Data 

R : p Y | X( )
Mapping 

p X = Xobs( )

p Y | Xobs,R( )

1 

2 
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Learning 

1 

2 

3 
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1 

2 

3 

Simply put … Learning Involves 

** Info can be added in/by the “Conversion Process” (have to be very careful here) 
** The conditioning role of Assumptions (A) is very strong 

coding 

MODEL DATA 

Converting Data-Info à Model-Info 

Algorithmic Info 
Theory (AIT) 

D: {Xobs,Yobs} p M |D,C( )



© Hoshin Gupta, The University of Arizona 

And Occurs When … 

Our Prior Uncertainty is Changed  
due to the Assimilation of New Information 

“Changed” … 
not Reduced 

X 

Y pb R( )

pb R( )⇒ pa R( )

pa R( )

Prior Uncertainty 
about the Xà Y 
Relationship 

1 

2 

3 

Posterior Uncertainty 
about the Xà Y 
Relationship 
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pb R( )

Kinds of Learning … 

Learning occurs when our Prior Uncertainty is Changed 
due to the Assimilation of New Information 

“Changed” … 
not Reduced 

pb R( )

pa R( ) Uncertainty Reduced 

pb R( )

Uncertainty Increased 

pa R( )

Uncertainty Shifted 

pa R( )

1 

2 

3 
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Can Information Can Be Bad ? 1 

2 

3 

There is a view (advanced in the literature) that 
Information can be “Bad” (so called “Mis-Information”) 

But Information is Simply What it Is … 
What Can be Suspect is Our Interpretation 

What can this new 
information tell me ? 

How to Handle Different Kinds of Information 

is the focus of ESTIMATION THEORY  
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The Structure of 
Information 
(in DES Models) 

1 

2 

3 

4 



© Hoshin Gupta, The University of Arizona 

DESM’s Encode Information 

1. Control Volume, Physics, Processes to Include, 
System Geometry & Material Properties 

2. Scale, Dimension & 3D Spatial Structure  

3. Process Relationships 

4. Uncertainty 

5. Solution Methodology 

HCL 

HSA 

HPP 

HUN 

As a Hierarchical Sequence of Decisions 
1 

2 

3 

4 
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Step One – Conservation Laws 
Information About: 

1.  Physics (conservation, thermodynamics), Physical Processes,  
System Geometry & Material Properties to include 

Conceptual Model 

dXt

dt
=Ut −Yt

Ut,Xt,Yt{ }≥ 0

Xt ≥Yt

X 
Y U 

System Diagram 

Conservation Constraints 

Question: What knowledge to encode and what to ignore? 

Result: A System Diagram and Conservation Law Hypothesis - HCL 

Physical 
Structure 

Process 
Structure 

1 

2 

3 

4 
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Step Two – System Architecture 
Information About: 

2.  Scale, Dimension and 3D Spatial Structure of the State-Space 
(elements), to enable finite computation 

Question: What is a sufficiently complex, finite dimensional, spatially 
organized representation of sub-system architecture? 

Result: A System Architecture Hypothesis - HSA 

Spatially Detailed 

Lumped 

1 

2 

3 

4 
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Step Three – Process Parameterization 
Information About: 

3.  Process Relationships via Equations, that account for 
Sub-Element Process & Material Heterogeneity 

Question: What mathematical forms to use for the Process 
Parameterization equations, at the architectural scale of interest? 

Result: A Process Parameterization Hypothesis - HPP 

Xi 

Yij 
Xj 

Yij = fxy ΔXijj |θxy( )
?

Parameters are artifacts of 
equation choice  

1 

2 

3 

4 
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Step Four – Uncertainty 
Information About: 

4.  What we KNOW that we do not know precisely (or at all) 

Question: What uncertainties are important, and how to represent 
them mathematically? 

Result: An Uncertainty Hypothesis - HUN 

Unc U( )

Unc H SA( )

Unc θ |HPP( )

Unc Y( )

Unc H PP( )

Unc Xo( )

Unc X( )

1 

2 

3 

4 
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Step Five – Solution Procedure 
Information About: 

5.  Procedure for ‘Solving’ the resulting Mathematical Model 

Question: How to Integrate (in space & time) the resulting system of 
(stochastic) differential equations? 

Xo

X

timet

dXt

dt
= g Xt |θ( )

slope 

Xt

Xt+Δt

t +Δt

Xt+Δt
est

Result: A Computational Model  
à  Practical manifestation of the Overall System Hypothesis - HOS 

à  Structured hierarchy of Conservation Law, System Architecture, Process 
Parameterization, and Uncertainty Hypotheses - HOS = {HUN|HPP|HSA|HCL} 

1 

2 

3 

4 
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Information is Added at Each Step 
(Uncertainty is Changed)  

1 

2 

3 

1.  Conservation Laws restrict possible U-X-Y 
trajectories  

 

 

4.  Specification of Uncertainty characterizes 
and quantifies “known unknowns” 

 

 
5.  Solution Procedure converts Model Info & Input 

Info into specific (uncertain) X-Y trajectories 

2.  System Architecture (a) further restricts 
trajectories & (b) determines spatial variability 

3.  Process Parameterization (a) further restricts 
trajectories & (b) introduces “tunable” parameters θxy
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Model “Failure” 
What Could Possibly 

Go Wrong ? 

1 

2 

3 

4 

5 
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What Could Go Possibly Wrong? 

1.  Problem Becomes Over-Constrained 
    Due to Hypotheses that are Unjustifiably Strong  

a)  Neglect Heterogeneity that is important 

b)  Over-simplify the System Architecture 

c)  Incorrect Process Equations forms 

d)  Deterministic Process Parameterizations (instead of Stochastic) 

2.  Problem Remains Under-Constrained 
 Due to Lack of Knowledge 

a)  Do not know Process Physics at the scale of system elements 

b)  Do not know Heterogeneity of Material Properties and Geometry at 
scale of system elements 

c)  Do not know (& account for) Heterogeneity of Material Properties 
and Geometry at scales smaller than the system elements 

1 

2 

3 

4 

5 
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What Can Go Wrong? 
1.  Problem Becomes Over-Constrained 

    Due to Hypotheses that are Unjustifiably Strong  

Usually some Combination 
of Both 

2.  Problem Becomes Under-Constrained 
 Due to Lack of Knowledge 

1 

2 

3 

4 

5 
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1 

2 

3 

4 

5 

Conceptual Illustration 

time 

Q 

IF ALL GOES WELL WE CONVERGE 
AROUND THE DATA 
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1 

2 

3 

4 

5 

Conceptual Illustration 

time 

Q 

IF OUR HYPOTHESES ARE “WRONG” … 
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Inference … 
Learning by 

“Try … Assess … & Try Again” 

1 

2 

3 

4 

5 

6 
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    Make Hypothesis 

System 

X1 

X2 X3 

X5 Model 
Hypothesis 

1 

2 

3 

4 

5 

6 
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    Make Hypothesis à Collect System Data 
1 

2 

3 

4 

5 

6 

Yobs 

Data 

Y = Yobs 
? 

Uobs 
System 

X1 

X2 X3 

X5 

U Y 

Model 
Hypothesis 



© Hoshin Gupta, The University of Arizona 

    Make Hypothesis à Collect System Data à Assess Likelihood 
1 

2 

3 

4 

5 

6 

Yobs 

Data 

Y = Yobs 
? 

Uobs 
System 

X1 

X2 X3 

X5 

U Y 

Model 
Hypothesis 

Compute 
“Likelihood” 

Add Hypothesis on 
Data Uncertainty 

Select 
Inference Rule 



© Hoshin Gupta, The University of Arizona 

Improve (Correct) 

 the Model Hypothesis 

Try to Improve (“Fix”) the Hypothesis 1 

2 

3 

4 

5 

6 

Yobs 

Data 

Y = Yobs 
? 

Uobs 
System 

X1 

X2 X3 

X5 

U Y 

Model 
Hypothesis 

Compute 
“Likelihood” 

Add Hypothesis on 
Data Uncertainty 

Select 
Inference Rule 
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1. Basic à Check Assumptions about Data 

Yobs 

Data 

Y = Yobs 
? 

Uobs 
System 

Compute “Likelihood” of 

the Model Hypothesis 

X1 

X2 X3 

X5 

U Y 

Model 
Hypothesis 

Inference 
Engine 

Add Hypothesis on 
Data Uncertainty 

Select 
Inference Rule 

Maximize  L ( Model | Data ) 

Make Sure that the “Likelihood” Metric 
Accurately Reflects the Stochastic Nature of 

the Information Provided by the Data 

1 

2 

3 

4 

5 

6 
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2. Easiest à Parameter/State Estimation 

Yobs 

Data 

Y = Yobs 
? 

Uobs 
System 

X1 

X2 X3 

X5 

U Y 

Model 
Hypothesis 

Maximize  L ( X ,θ| HUN, HPP , HSA , HCL , Data ) 

Assumed Correct 

1 

2 

3 

4 

5 

6 Search over all 
feasible values 
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3. Harder à Process Parameterization Estimation 

Yobs 

Data 

Y = Yobs 
? 

Uobs 
System 

X1 

X2 X3 

X5 

U Y 

Model 
Hypothesis Assumed Correct 

1 

2 

3 

4 

5 

6 
Re-Read Literature 
More Field Work 
Try other Guesses 

Maximize  L (HPP| HUN, HSA , HCL , Data ) 
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4. Harder Still à System Architecture Estimation 

Yobs 

Data 

Y = Yobs 
? 

Uobs 
System 

X1 

X2 X3 

X5 

U Y 

Model 
Hypothesis 

1 

2 

3 

4 

5 

6 
How to Distinguish the 

effects of Architecture 
from Parameterization? 

Maximize  L (HSA , HPP| HUN, HCL , Data ) 

Assumed Correct 
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“Maximum Entropy” 
The “ME” Approach to DESM Learning 

1 

2 

3 

4 

5 

6 

7 

Shervan Gharari Grey Nearing Uwe Ehret 
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What is a Maximum-Entropy (ME) Approach ? 1 

2 

3 

4 

5 

6 

7 

DESM’s Code Information as a 
Hierarchical Sequence of Decisions 

HCL 

HSA 

HPP 

HUN 

In ME à At each stage, we adopt an 
Informationally Justifiable approach 

In other words … 
Try to not build Overly Strong Assumptions 

into either the Model or the Inference Procedure 

Use “Maximal Entropy” Assumptions 

That add only as much Info to the Model as is justified by 
available evidence at the model relevant space-time scale  
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Example à ME Process Parameterization 

H1

H1

L

Flux =YK

G =
H1−H2

L
Basic Principle of 
Thermodynamics 

Assumes:  Medium is “homogenous” 
 Gradient established “instantaneously” 

1.  Any Flux Parameterization must have the general form 
 where          is the  gradient  to be dispersed 
 and        is the  conductivity  of the medium Yt = Kt

xy ⋅Xt
Xt

Kt
xy

1 

2 

3 

4 

5 

6 

7 
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Example à ME Process Parameterization 

1.  A Flux Parameterization must have the general form 
 where          is the  gradient  to be dispersed 
 and        is the  conductivity  of the medium Yt = Kt

xy ⋅Xt
Xt

Kt
xy

2.  Condition                        must hold to 
preserve mass balance, implying that   

0 ≤Yt ≤ Xt 0 ≤ Kt
xy ≤1

1 

2 

3 

4 

5 

6 

7 
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Example à ME Process Parameterization 

1.  A Flux Parameterization must have the general form 
 where          is the  gradient  to be dispersed 
 and        is the  conductivity  of the medium Yt = Kt

xy ⋅Xt
Xt

Kt
xy

2.  Condition                        must hold to 
preserve mass balance, implying that   

0 ≤Yt ≤ Xt 0 ≤ Kt
xy ≤1

3.          is a monotonic non-decreasing 
or constant function of 
Kt

xy

Xt

Kt
xy

Xt

Consistent with physical principle that 

Larger gradients  à  Larger fluxes  

1 

2 

3 

4 

5 

6 

7 
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Example à ME Process Parameterization 

1.  A Flux Parameterization must have the general form 
 where          is the  gradient  to be dispersed 
 and        is the  conductivity  of the medium Yt = Kt

xy ⋅Xt
Xt

Kt
xy

2.  Condition                        must hold to 
preserve mass balance, implying that   

0 ≤Yt ≤ Xt 0 ≤ Kt
xy ≤1

3.          is a monotonic non-decreasing 
or constant function of 
Kt

xy

Xt

Kt
xy

Xt

Because sub-element conditions will generally be  

different (in an unknown manner)  

each time the gradient ∆X is applied 

4.          is a Probabilistic 
function of 
Kt

xy

Xt

Xt

Kt
xy ~ p Kt

xy | Xt( )

1 

2 

3 

4 

5 

6 

7 
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Example à ME Process Parameterization 

1.  A Flux Parameterization must have the general form 
 where          is the  gradient  to be dispersed 
 and        is the  conductivity  of the medium Yt = Kt

xy ⋅Xt
Xt

Kt
xy

2.  Condition                        must hold to 
preserve mass balance, implying that   

0 ≤Yt ≤ Xt 0 ≤ Kt
xy ≤1

3.          is a monotonic non-decreasing 
or constant function of 
Kt

xy

Xt

Kt
xy

Xt

4.          is a Probabilistic 
function of 
Kt

xy

Xt

Xt

Kt
xy ~ p Kt

xy | Xt( )

1 

2 

3 

4 

5 

6 

7 
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In the Common Modeling Approach … 

U1 Z1 

U2 Z2 
X1 

X2 X3 

X5 

U1 Z1 

U2 Z2 

X 

Y = f X |θ( )Y 

Deterministic Representations of the Process Parameterization Equations  
impose Overly Strong Assumptions about what we really know regarding 

the actual nature of the process relationships at the modeling scale  

1 

2 

3 

4 

5 

6 

7 

Invariably based on small scale field or lab studies 
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Maximum-Entropy Parameterization 

U1 Z1 

U2 Z2 
X1 

X2 X3 

X5 

U1 Z1 

U2 Z2 

X 

p Y | X( )Y 

Imposes only the minimal information required by Physics 

PPE’s are randomly selected from a  
Maximum-Entropy Distribution of Random Functions 

that is Constrained to obey Physical Principles 

1 

2 

3 

4 

5 

6 

7 
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Select one or more System 
Architectures 

This Actually Enables Better Inference 
of System Architecture 

U1 Z1 

U2 Z2 
X1 

X2 X3 

X5 

U1 Z1 

U2 Z2 

By minimizing the confounding effect of 
incorrect assumptions regarding the PPE’s 

Run e.g., 10,000+ random cases (Monte Carlo on “Functions”) 

time 

Z 

Simulation Uncertainty constrained mainly by 
info in System Architecture U Q |HSA,HCL,P( )

1 

2 

3 

4 

5 

6 

7 
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Inferring System Architecture 

U1 Z1 

U2 Z2 
X1 

X2 X3 

X5 

U1 Z1 

U2 Z2 

Evaluate Performance using Data 

Run e.g., 10,000+ random cases 

time 

Z 

p Lt |HSA,D( )
Lt HSA |D( )

Performance 

Compute the (temporal) Likelihood of 
the Hypothesis given the Data 

L HSA |D( )

1 

2 

3 

4 

5 

6 

7 
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Inferring System Architecture 

U1 Z1 

U2 Z2 
X1 

X2 X3 

X5 

U1 Z1 

U2 Z2 

Evaluate Remaining Uncertainty 

Run e.g., 10,000+ random cases 

time 

Z Ut Y |HSA( )
p Ut |HSA( )

Uncertainty 

Compute the (temporal) Entropy of 
the Model Ensemble Simulations 

U Y |HSA( )

1 

2 

3 

4 

5 

6 

7 
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Inferring System Architecture 

Bootstrap & Plot the Results 
For different System Architectures 

U
nc

er
ta

in
ty

   
U

 

Performance   -Ln L 

 

Max 
(U) 

0 
0 Max 

(–Ln L) 

A1 

A2 A3 

Target 

1 

2 

3 

4 

5 

6 

7 
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Inferring PPE Form 

Use Bayesian Updating to Select Equation Forms 
with Highest Performance 

(conditional on a selected Architecture) 

Y 

X 

Max 
Y 

0 
0 

1 

2 

3 

4 

5 

6 

7 
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Inferring PPE Form 

Propose Mathematical Forms for Equations 
(conditional on a selected Architecture) 

Y 

X 

Max 
Y 

0 
0 

Mapping 

R : p Y | X,θ( )

1 

2 

3 

4 

5 

6 

7 
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Inferring PPE Form 

Proceed with Parameter Estimation 
(conditional on a selected Architecture & Parameterization Form) 

Y 

X 

Max 
Y 

0 
0 

Mapping 

R : p Y | X,θ( )

1 

2 

3 

4 

5 

6 

7 
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Inferring PPE Form 

Evaluate Remaining Uncertainty 
(conditional on a selected Architecture & Parameterization Form) 

Y 

X 

Max 
Y 

0 
0 

Mapping 

R : p Y | X,θ( )

Less certain about 
functional form 

More certain about 
functional form 

1 

2 

3 

4 

5 

6 

7 
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The Result 1 

2 

3 

4 

5 

6 

7 

Strategy to investigate 
Model Structural Hypotheses 

Without the need to make Strong Assumptions 
Regarding Process Parameterizations (Equations) 

In Principle a similar approach could be 
used to investigate value of different 

Conservation Laws 
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More Generally 1 

2 

3 

4 

5 

6 

7 

Bring more “Honesty/Rigor” into the  
Model Building Process 

1)   Build Into the Model Clarity Regarding 
What We Feel Certain/Uncertain About 

2)   Be Clear about “What is Known” versus 
“What is Hypothesis / Assumption” 

“Maximum Entropy Approach” 
To Model Building 
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Some Comments in Conclusion 1 

2 

3 

4 

5 

6 

7 

1.  Models & Data codify Information about the world 

2.  Information implies Change in Uncertainty about Something 

3.  Models are Hierarchical Assemblages of Hypotheses 
1.  Conservation Laws 
2.  System Architecture 

3.  Process Parameterization 
4.  Uncertainty 

4.  Model Hypotheses can be: 
1.  Over-Constrained by un-justifiably strong hypotheses  
2.  Under-Constrained by lack of knowledge about 

a)   Scale-dependence of process relationships 
b)   Sub-element heterogeneity 

5.  Model Structural Inference can be done using Max-Entropy PP’s  

6.  Process Equation Inference can be done using Bayes’ Law 
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And Finally … 

An Information Theory perspective can help improve the way we 
use models as Hypotheses for Scientific Investigation 

How does this 
system function ? 

X1 

X2 X3 

X5 

U Y 

Model 
Hypothesis 

1 

2 

3 

4 

5 

6 

7 
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Thank You 

Learning 

Predictive 
Uncertainty 


