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•  Considera;on	of	EWEs	may	improve	opera;onal	probabilis;c	

temperature	and	precipita;on	forecasts	in	the	8–10	day	;me	
range.		

	



Extreme	Event	Iden>fica>on	
Extreme	Cold	Events:	
	

•  Employed	1-h	forecasts	of	2-m	temperature	from	the	CFSR				
(0.5°×	0.5°)	at	6-h	intervals	during	1979–2014	(Saha	et	al.	2014).	

•  Compiled	;mes	during	which	at	least	one	grid	point	was	
characterized	by	a	temperature	<	1st	percen>le	within	separate	
domains	over	the	western	and	eastern	U.S.		
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•  Iden;fied	;mes	that	
ranked	in	the	top	5%	in	
terms	of	the	number	of	
grid	points	<	1st	
percen>le	as	extreme	
cold	events	within	each	
domain.	
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Antecedent	Environments	
Associated	with	Cool-Season	
(Sept.–May)	EWEs	in	the	

Context	of	North	Pacific	Jet	
Variability		



•  Removed	the	mean	and	the	annual	and	diurnal	cycles	from							
6-hourly,	250-hPa	zonal	wind	data	from	the	CFSR	(1979–2014)	

•  Restricted	data	to	the	cool	season	(Sept.–May)	
•  Performed	an	EOF	analysis	on	the	zonal	wind	anomalies	within	

the	domain:	10–80°N	;	100°E–120°W	

Analysis	techniques	and	resultant	EOF	pa`erns	are	consistent	
with	related	work	on	the	North	Pacific	Jet:	
•  Athanasiadis	et	al.	(2010)	
•  Jaffe	et	al.	(2011)	
•  Griffin	and	Mar;n	(2016)	
		

250-hPa	North	Pacific	Zonal	Wind	Variability	
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Forecast	Skill	of	Extreme	Temperature	Events	

•  GEFS	Reforecasts	(Hamill	et	al.	2013)	of	extreme	cold	and	warm	
events	at	each	forecast	lead	;me	were	binned	based	on	whether	
they	exhibited	a	standardized	root-mean-square	error	(RMSE)	or	
standardized	anomaly	correla;on	coefficient	(ACC)	of	500-hPa	
geopoten;al	height	over	the	CONUS	(25–55°N;	140–60°W)	that	
was:	

	

•  Above-normal	(>0.5σ)	
•  Below-normal	(<–0.5σ)	
•  Near-normal	(–0.5σ	<	x	<	0.5σ)		
	



Forecast	Skill	of	Extreme	Temperature	Events	

•  GEFS	Reforecasts	(Hamill	et	al.	2013)	of	extreme	cold	and	warm	
events	at	each	forecast	lead	;me	were	binned	based	on	whether	
they	exhibited	a	standardized	root-mean-square	error	(RMSE)	or	
standardized	anomaly	correla;on	coefficient	(ACC)	of	500-hPa	
geopoten;al	height	over	the	CONUS	(25–55°N;	140–60°W)	that	
was:	

	

•  Above-normal	(>0.5σ)	
•  Below-normal	(<–0.5σ)	
•  Near-normal	(–0.5σ	<	x	<	0.5σ)		
	

•  The	percent	difference	between	the	frequency	of	events	with	
below-normal	and	above-normal	RMSE	or	ACC	offers	informa;on	
regarding	the	forecast	skill	of	extreme	events.	

Freqbelow−normal −Freqabove−normal
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•  The	North	Pacific	Jet	phase	diagram	is	a	tool	that	objec;vely	
characterizes	the	upper-tropospheric	flow	paoern	over	the	
North	Pacific.	

•  The	North	Pacific	Jet	phase	diagram	can	be	used	to	iden;fy	
antecedent	environments	that	are	favorable	for	the	produc;on	
of	extreme	temperature	events	over	the	U.S.	

•  Extreme	warm	and	extreme	cold	events	are	both	characterized	
by	a	higher	frequency	of	forecasts	with	above-normal	ACC	
scores	than	below-normal	ACC	scores.	

•  Extreme	warm	events	are	characterized	by	a	higher	frequency	
of	forecasts	with	below-normal	RMSE,	whereas	extreme	cold	
events	are	characterized	by	a	higher	frequency	of	forecasts	
with	above-normal	RMSE.	

Summary	
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Phase	Diagram	Web	Interface	



Observa>onal	Need:	The	predic;on	of	extreme	events	over	the	
CONUS	is	likely	to	benefit	from	a	greater	understanding	of	the	

flow	evolu;on	over	the	North	Pacific.	

Summary	

•  A	web	interface	has	been	developed	that	offers	real	;me	North	
Pacific	Jet	phase	diagram	forecasts	and	extreme	event	
composites.		

	h`p://www.atmos.albany.edu/facstaff/
awinters/real>me/About_EOFs.php	

	

Contact:		acwinters@albany.edu	
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•  Provide	forecasters	with	a	“first	alert”	to	the	possibility	of	the	
occurrence	of	extreme	temperature	and	precipita;on	events	
during	week	two	on	the	basis	of	current	condi;ons	and	model	
forecasts.	

•  Provide	forecasters	with	an	indica;on	of	the	character	and	
flavor	of	possible	extreme	events	as	inferred	from	where	the	
events	lie	in	the	frequency	distribu;ons	of	the	an;cipated	
event	types.		

•  Provide	forecasters	with	knowledge	that	allows	them	to	make	
science-based	adjustments	to	model	guidance	and	add	value	
to	week	two	forecasts	of	temperature	and	precipita;on.		

Project	Outcomes	



Extreme	Event	
Iden>fica>on	



Extreme	Event	Iden>fica>on	
Extreme	Warm	Events:	
	

•  Employed	1-h	forecasts	of	2-m	temperature	from	the	CFSR				
(0.5°×	0.5°)	at	6-h	intervals	

•  Compiled	data	for	each	grid	
point	within	21-day	windows	
centered	on	each	analysis	
;me	for	36	years,	1979–2014	
•  Each	grid	point	has	756	(21×36)	
data	points	for	each	analysis	;me	

	
•  Determined	the	temperature	

that	corresponds	to	the	99th	
percen>le	for	each	grid	point	
at	a	given	analysis	;me	

	

5 10 15 20 25 30 35
0

10

20

30

40

50

60

70

99th Percentile
                    32oC

Near Albany, NY (43oN; –74oW) – 1900 UTC 30 May

(756 total obs)

Fr
eq

ue
nc

y

2-m Air Temperature (oC)
Frequency	distribu>on	of	2-m	temperature	at	

1900	UTC	30	May	for	a	grid	point	near	
Albany,	NY	



Extreme	Event	Iden>fica>on	



Extreme	Event	Iden>fica>on	
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Extreme	Event	Iden>fica>on	
Extreme	Warm	Events:	
	

•  Cataloged	;mes	during	which	at	least	one	grid	point	was	
characterized	by	a	temperature	>	99th	percen>le	

•  Ranked	;mes	within	each	
domain	by	the	number	of	
grid	points	>	99th	percen>le	

•  Iden;fied	;mes	that	rank	in	
the	top	5%	in	terms	of	the	
number	of	grid	points	>	99th	
percen>le	within	each	
domain	as	extreme	warm	
events	
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Extreme	Event	Iden>fica>on	
Extreme	Precip.	Events:	
	

•  Employed	CPC	Unified	Gauge-Based	Analysis	of	Daily	
Precipita;on	over	CONUS	during	1979–2014	(0.25°×	0.25°)		

	

•  Compiled	data	within	21-day	windows	centered	on	each	;me	for	
all	36	years	
•  Each	grid	point	has	(21	×	36)	756	data	points	for	a	given	;me	

•  Determined	the	precipita;on	values	that	correspond	to	the	99th	
percen;le	for	each	grid	point	at	a	given	;me	(only	for	days	
precipita;on	was	observed)	

•  Iden;fied	;mes	that	rank	in	the	top	5%	in	terms	of	the	number	
of	grid	points	>	99th	percen;le	within	each	domain	as	extreme	
precipita>on	events	



Extreme	Event	Iden>fica>on	
Temperature	

	

Eastern	U.S.	(1st	%	Cold):	
	-	Threshold:	221	grid	points		
	~7.0°×7.0°	box	
	-	Ager	QC:	225	events	

	

Eastern	U.S.	(99th	%	Warm):	
	-	Threshold:	224	grid	points	
	~7.0°×7.0°	box	
	-	Ager	QC:	304	events	

	

Western	U.S.	(1st	%	Cold):	
	-	Threshold:	125	grid	points	
	~5.0°×5.0°	box	
	-	Ager	QC:	271	events	

	

Western	U.S.	(99th	%	Warm):	
	-	Threshold:	144	grid	points	
	~5.5°×5.5°	box	
	-	Ager	QC:	264	events	

Precipita>on	
	

Eastern	U.S.	(99th	%):	
	-	Threshold:	211	grid	points	

							~3.5°×3.5°	box	
	-	Ager	QC:	351	events	

	
Western	U.S.	(99th	%):	

	-	Threshold:	141	grid	points	
	~2.75°×2.75°	box	
	-	Ager	QC:	333	events	

Quality	control:	Events	within	24-h	
of	another	event	were	considered	

to	be	the	same	event.	



Extreme	Event	Iden>fica>on	
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Geographic	Event	Clusters	
Extreme	Warm	Event	Centroids	East	of	the	Rockies	



Geographic	Event	Clusters	
Extreme	Warm	Event	Frequency	for	Northern	Plains	
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Predictability	by	Jet	Regime	
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NPJ	Phase	Diagram	



•  Forecast	Error	
•  Distance	between	GFS	determinis;c	forecast	and	the	
analysis	at	each	forecast	hour	

•  Distance	between	the	GEFS	ensemble	mean	forecast	and	
the	analysis	at	each	forecast	hour	

•  Average	distance	between	ensemble	members	and	the	
analysis	at	each	forecast	hour	

	

•  Probability	of	Detec>on	
•  Did	the	analysis	fall	within	the	ensemble	envelope	at	each	
forecast	hour?	

Candidate	Verifica>on	Metrics	



•  Reliability	Diagram	
•  A	reliability	diagram	is	
used	to	evaluate	the	
performance	of	GEFS	
ensemble	forecasts	with	
respect	to	the	NPJ	Phase	
Diagram.	

•  ROC	
•  Could	a	ROC	be	an	
alterna;ve	metric	to	
evaluate	the	performance	
of	GEFS	ensemble	
forecasts	with	respect	to	
the	NPJ	Phase	Diagram?	
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•  Each	point	on	the	phase	diagram	is	a	weighted	average	of	the	
principal	components	within	+/−	1	day	of	the	;me	under	
considera;on	
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1.  Characterizes	the	past	evolu;on	and	present	state	of	the	
upper-tropospheric	flow	paoern	over	the	North	Pacific.	

	
	

•  Captures	regime	transi;ons	
•  Iden;fies	flow	paoerns	conducive	to	the	development		

of	EWEs	

2.  Characterizes	the	forecasted	evolu;on	of	the	upper-
tropospheric	flow	paoern	over	the	North	Pacific.	

	

	

	

	

Real	Time	North	Pacific	Jet	Phase	Diagram	
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16–19	November	2014	Composite	Anomalies	

500-hPa	Geo.	Height	(m)	 Surface	Temperature	(°C)	

Real	Time	North	Pacific	Jet	Phase	Diagram	
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GEFS	Ensemble	Trajectories	Ini;alized	0000	UTC	24	May	2016		

0000	UTC	2	Jun	(verifica;on)	

250-hPa	Zonal	Wind	Anomalies	and	EOF1:	0000	UTC	2	Jun	

250-hPa	Zonal	Wind	Anomalies	and	EOF2:	0000	UTC	2	Jun	
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250-hPa	zonal	wind	
anomalies	at	0000	
UTC	2	Jun	project	
strongly	onto		
EOF2	>	0	


