OSE and OSSE Studies to Evaluate the Impact of Real and Simulated Global Hawk Data on Winter Storm Forecasts over Alaska and the Arctic

Andrew C. Kren1,2, Hongli Wang3, Jason M. English2,4, Tanya R. Peevey2,4, Lidia Cucurull5

1Cooperative Institute for Research in the Atmosphere, Colorado State University, Ft. Collins, CO USA
2NOAA ESRL/GSD, Boulder, CO USA
3Panasonic Weather Solutions, Morrisville, NC USA
4Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO USA
5NOAA Atlantic Oceanographic and Meteorological Laboratory, Hurricane Research Division and NOAA ESRL/GSD, Boulder, CO USA

Global Observing Systems Analysis (GOSA) Group: http://www.esrl.noaa.gov/gsd/gosa/

14th Conference on Polar Meteorology and Oceanography
Weather and Climate Modeling in the Polar Regions
Seattle, Washington
January 26, 2017

26-Jan-2017

2017 AMS Annual Meeting
Sensing Hazards with Operational Unmanned Technology (SHOUT) Project and Motivation

- Project within NOAA’s Unmanned aircraft systems (UAS) program
- Test impact of real and simulated UAS data on forecasts using targeted observing with Global Hawk (GH)
 - Observing System Experiments (OSEs)
 - Observing System Simulation Experiments (OSSEs)
- Satellite gap mitigation (Soumi-NPP and JPSS-1/2)
- **SHOUT-El Nino Rapid Response (ENRR)**
 - Joint effort Feb 2016 with GH, G-IV, C-130’s
 - Improve U.S. West Coast forecasts
 - GH sampled 3 storms
 - 3rd Storm – Feb 21st – strong Atmospheric River
 - 66 total dropsondes released

http://www.esrl.noaa.gov/psd/enso/rapid_response/
SHOUT Global Hawk Instrumentation Payload

Airborne Vertical Atmospheric Profiling System (AVAPS)

- Temperature, wind, humidity
- 88 sondes
- ~80-115 hPa

High Altitude Monolithic Microwave Integrated Circuit (MMIC) Sounding Radiometer (HAMSR)

- Microwave radiometer operating at 25 spectral channels
- 3-D distribution of temperature, water vapor

High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP)

- Dual-frequency conical scanning radar
- 3-D winds, ocean vector winds, precip
- **Resolution**: 60 m vertical, 1 km horizontal
Ensemble Transform Sensitivity (ETS) Targeted Observing Technique

- Improve forecasts in verification region at selected *targeting and verification times*
- Calculates *gradient* of total forecast error variance to analysis error variance reduction

Sample timeline

- Ensembles 80 mem GEFS
- 4-5 days lead-time
- ETS-based technique
- 1-3 day lead-time
- Verification Domain and time
- Daily forecast briefings providing high-impact cases 4-5 days in advance
- ETS to identify areas of large error growth at 1-3 day lead time
- Subsequent flight path design

Zhang et al. (2016)
OSE Experiment Design during SHOUT-ENRR February 21 Storm Cycling Global Forecast System (GFS) model 2/21 18z to 2/22/ 12z

<table>
<thead>
<tr>
<th>Experiment Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td>All current operational observations</td>
</tr>
<tr>
<td>DROP</td>
<td>CTL + GH dropsondes</td>
</tr>
<tr>
<td>noNPP</td>
<td>CTL without Soumi-NPP satellite</td>
</tr>
<tr>
<td>DROP_noNPP</td>
<td>noNPP + GH dropsondes</td>
</tr>
</tbody>
</table>

ETS sensitivity at GH flight time (00z Feb 22nd) for verification time (00z Feb 24th) over AK verification domain

Results verified against ECMWF analysis using Anomaly Correlation and RMSE
ERA-Interim Moisture transport (IVT and IWV) at Targeting and Verification times

Targeting time

Verification Time
Assimilating dropsondes increases forecast skill and reduces error

Anomaly Correlation

- Anomaly Correlations AK Domain SLP
 - CTL
 - DROP
 - DROP_noNPP
 - noNPP

- Anomaly Correlations AK Domain 500 hPa HGT
 - CTL
 - DROP
 - DROP_noNPP
 - noNPP

RMSE

- RMSE AK Domain (SLP)
 - noNPP
 - DROP_noNPP

- RMSE AK Domain (500 hPa HGT)
 - noNPP
 - DROP_noNPP

Relative RMSE (%)

- AK Domain (SLP)
 - noNPP
 - DROP_noNPP

- AK Domain 500 hPa HGT
 - noNPP
 - DROP_noNPP
OSSE Experiment Design February Alaska Storm Cycling GFS model 2-3 days in advance of Verification Time of 00 UTC Feb 2

- **CTL**
 - Operational obs. only

- **ETS**
 - Automated ETS flight path design

- **LOW**
 - Sample rapidly developing Low-pressure

- **JET**
 - Sample jet exit region

- **MOIST**
 - Sample Atmospheric river

- 70-80 dropsondes per simulated GH flight
- **ETS** flight based on average 2-3 day ETS sensitivity
- Results verified against ECMWF T511 Nature Run
OSSE Simulated Flight Tracks

ETS (500 hPa)

LOW (500 hPa Vorticity)

JET (200 hPa Isotachs)

MOIST (700 hPa IWV)
Simulated dropsondes increase forecast skill among all flight tracks

Anomalous Correlations CONUS Domain SLP

Anomalous Correlations CONUS Domain 500 hPa HGT

CTL
ETS
LOW
JET
MOIST

CTL
ETS
LOW
JET
MOIST
Summary

• SHOUT-ENRR OSE impact results
 • Increased forecast skill and reduced error when using targeted GH dropsondes during current observing and potential future satellite data gaps

• OSSE studies
 • Validation of ETS technique shows it accurately identifies regions of increased error growth with higher forecast skill in AUTO path compared to CTL
 • Sampling upper-level jet streak and developing low show largest improvement over CTL forecasts in 1-3 day forecast lead times
 • Importance of both sensitive regions and key meteorological features

• Future Research needs
 • Further UAS campaigns to examine statistical significance of targeting
 • Dropsondes, microwave instruments, radar, and SST fluxes using UAS platforms

26-Jan-2017

2017 AMS Annual Meeting
Backup slides
Observing System Experiments (OSEs) and Observing System Simulation Experiments (OSSEs)

OSEs

REAL WORLD

Real atmosphere
observations
analysis
Model forecast

OSSE WORLD

Nature Run (simulated truth)
Synthetic observations
analysis
Model forecast

Verification

Courtesy: Lidia Cucurull

26-Jan-2017
2017 AMS Annual Meeting
Ensemble Transform Sensitivity technique

(a) Calculate Ensemble transform matrix
(b) Predict forecast error covariance (analysis and forecast error)
(c) Estimate prediction error variance reduction

The locations of sensitive regions is dependent on the area in which a forecast improvement is wanted, the verification area, but also the forecast length and the atmospheric flow between the targeting and verification times.

Zhang et al. (2016)
Comprehensive Evaluation of Relative RMSE in current and potential future observing systems

Reduction in forecast error of 1-5% across several variables

<table>
<thead>
<tr>
<th>Atmospheric Variable</th>
<th>DROP vs. CTL</th>
<th>DROP_noNPP vs. noNPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 Height</td>
<td>-3.46</td>
<td>-3.05</td>
</tr>
<tr>
<td>300 Height</td>
<td>-1.12</td>
<td>-2.99</td>
</tr>
<tr>
<td>500 Height</td>
<td>-3.03</td>
<td>-4.22</td>
</tr>
<tr>
<td>700 Height</td>
<td>-3.66</td>
<td>-4.79</td>
</tr>
<tr>
<td>850 Height</td>
<td>-3.74</td>
<td>-4.44</td>
</tr>
<tr>
<td>925 Height</td>
<td>-3.68</td>
<td>-4.19</td>
</tr>
<tr>
<td>Sea-Level Pressure</td>
<td>-3.13</td>
<td>-3.7</td>
</tr>
<tr>
<td>200 Temperature</td>
<td>0</td>
<td>-1.53</td>
</tr>
<tr>
<td>300 Temperature</td>
<td>-0.5</td>
<td>-2.46</td>
</tr>
<tr>
<td>500 Temperature</td>
<td>0.62</td>
<td>-0.62</td>
</tr>
<tr>
<td>700 Temperature</td>
<td>-0.91</td>
<td>-0.91</td>
</tr>
<tr>
<td>850 Temperature</td>
<td>-1.61</td>
<td>-0.81</td>
</tr>
<tr>
<td>925 Temperature</td>
<td>-0.5</td>
<td>-1</td>
</tr>
<tr>
<td>200 u-wind</td>
<td>-1.98</td>
<td>-2.01</td>
</tr>
<tr>
<td>300 u-wind</td>
<td>-0.61</td>
<td>-3.59</td>
</tr>
<tr>
<td>500 u-wind</td>
<td>-2.08</td>
<td>-1.34</td>
</tr>
<tr>
<td>700 u-wind</td>
<td>-2.11</td>
<td>-1.89</td>
</tr>
<tr>
<td>850 u-wind</td>
<td>-2.72</td>
<td>-1.84</td>
</tr>
<tr>
<td>925 u-wind</td>
<td>-2.18</td>
<td>-1.48</td>
</tr>
<tr>
<td>200 v-wind</td>
<td>-3.11</td>
<td>-2.11</td>
</tr>
<tr>
<td>300 v-wind</td>
<td>0.3</td>
<td>-1.48</td>
</tr>
<tr>
<td>500 v-wind</td>
<td>-0.78</td>
<td>-1.95</td>
</tr>
<tr>
<td>700 v-wind</td>
<td>-1.65</td>
<td>-1.42</td>
</tr>
<tr>
<td>850 v-wind</td>
<td>-1.81</td>
<td>-2.03</td>
</tr>
<tr>
<td>925 v-wind</td>
<td>-1.81</td>
<td>-2.55</td>
</tr>
<tr>
<td>200 RH</td>
<td>-2.29</td>
<td>0</td>
</tr>
<tr>
<td>300 RH</td>
<td>1.87</td>
<td>-1.11</td>
</tr>
<tr>
<td>500 RH</td>
<td>-0.81</td>
<td>-0.45</td>
</tr>
<tr>
<td>700 RH</td>
<td>-0.75</td>
<td>-0.84</td>
</tr>
<tr>
<td>850 RH</td>
<td>-1.63</td>
<td>-1.33</td>
</tr>
<tr>
<td>925 RH</td>
<td>-0.92</td>
<td>-0.31</td>
</tr>
</tbody>
</table>