OSE and OSSE Studies to Evaluate the Impact of Real and Simulated Global Hawk Data on Winter Storm Forecasts over Alaska and the Arctic

Andrew C. Kren^{1,2}, Hongli Wang³, Jason M. English^{2,4}, Tanya R. Peevey^{2,4}, Lidia Cucurull⁵

perative Institute for Research in the Atmosphere, Colorado State University, Ft. Collins, CO US

²NOAA ESRL/GSD, Boulder, CO USA NORT ³Panasonic Weather Solutions, Morrisville, NC USA

⁴Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO USA ⁵NOAA Atlantic Oceanographic and Meteorological Laboratory , Hurricane Research Division and NOAA ESRL/GSD, Boulder, CO USA Global Observing Systems Analysis (GOSA) Group : http://www.esrl.noaa.gov/gsd/gosa/

> 14th Conference on Polar Meteorology and Oceanography Weather and Climate Modeling in the Polar Regions Seattle, Washington

> > January 26, 2017

26-Jan-2017

N872NA

2017 AMS Annual Meeting

Sensing Hazards with Operational Unmanned Technology (SHOUT) Project and Motivation

- Project within NOAA's Unmanned aircraft systems (UAS) program
- Test impact of real and simulated UAS data on forecasts using targeted observing with Global Hawk (GH)
 - Observing System Experiments (OSEs)
 - Observing System Simulation Experiments (OSSEs)
- Satellite gap mitigation (Soumi-NPP and JPSS-1/2)

• SHOUT-El Nino Rapid Response (ENRR)

- Joint effort Feb 2016 with GH, G-IV, C-130's
- Improve U.S. West Coast forecasts
- GH sampled 3 storms
- 3rd Storm Feb 21st strong Atmospheric River
 - 66 total dropsondes released

http://www.esrl.noaa.gov/psd/enso/rapid_response/

SHOUT Global Hawk Instrumentation Payload

Airborne Vertical Atmospheric Profiling System (AVAPS)

High Altitude Monolithic Microwave Integrated Circuit (MMIC) Sounding Radiometer (HAMSR)

Microwave radiometer operating at 25 spectral channels 3-D distribution of temperature, water vapor

High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP)

Dual-frequency conical scanning rada 3-D winds, ocean vector winds, precip **Resolution**: 60 m vertical, 1 km horiz

Ensemble Transform Sensitivity (ETS) Targeted Observing Technique

- Improve forecasts in verification region at selected *targeting and verification times*
- Calculates gradient of total forecast error variance to analysis error variance reduction

OSE Experiment Design during SHOUT-ENRR February 21 Storm Cycling Global Forecast System (GFS) model 2/21 18z to 2/22/ 12z

	Experiment Name	Description
	CTL	All current operational observations
	DROP	CTL + GH dropsondes
Satellite gap	noNPP	CTL without Soumi-NPP satellite
	DROP_noNPP	noNPP + GH dropsondes

ETS sensitivity at GH flight time (00z Feb 22nd) for verification time (00z Feb 24th) over AK verification domain

Results verified against ECMWF analysis using Anomaly Correlation and RMSE

ERA-Interim Moisture transport (IVT and IWV) at Targeting and Verification times

Assimilating dropsondes increases forecast skill and reduces error

26-Jan-2017

OSSE Experiment Design February Alaska Storm Cycling GFS model 2-3 days in advance of Verification Time of 00 UTC Feb 2

Experiment Name	Description
CTL	Operational obs. only
ETS	Automated ETS flight path design
LOW	Sample rapidly developing Low- pressure
JET	Sample jet exit region
MOIST	Sample Atmospheric river

- 70-80 dropsondes per simulated GH flight
- ETS flight based on average 2-3 day ETS sensitivity
- Results verified against ECMWF T511 Nature Run

OSSE Simulated Flight Tracks

Simulated dropsondes increase forecast skill among all flight tracks

Summary

- SHOUT-ENRR OSE impact results
 - Increased forecast skill and reduced error when using targeted GH dropsondes during current observing and potential future satellite data gaps
- OSSE studies
 - Validation of ETS technique shows it accurately identifies regions of increased error growth with higher forecast skill in AUTO path compared to CTL
 - Sampling upper-level jet streak and developing low show largest improvement over *CTL* forecasts in 1-3 day forecast lead times
 - Importance of both sensitive regions and key meteorological features
- Future Research needs
 - Further UAS campaigns to examine statistical significance of targeting
 - Dropsondes, microwave instruments, radar, and SST fluxes using UAS platforms

Backup slides

Observing System Experiments (OSEs) and Observing System Simulation Experiments (OSSEs)

Ensemble Transform Sensitivity technique

- (a) Calculate Ensemble transform matrix
- (b) Predict forecast error covariance (analysis and forecast error)
- (c) Estimate prediction error variance reduction

26-Jan-2017

Atmospheric Variable	DROP vs. CTL	DROP_noNPP vs. noNPP
200 Height	-3.46	-3.05
300 Height	-1.12	-2.99
500 Height	-3.03	-4.22
700 Height	-3.66	-4.79
850 Height	-3.74	-4.44
925 Height	-3.68	-4.19
Sea-Level Pressure	-3.13	-3.7
200 Temperature	0	-1.53
300 Temperature	-0.5	-2.46
500 Temperature	0.62	-0.62
700 Temperature	-0.91	-0.91
850 Temperature	-1.61	-0.81
925 Temperature	-0.5	-1
200 u-wind	-1.98	-2.01
300 u-wind	-0.61	-3.59
500 u-wind	-2.08	-1.34
700 u-wind	-2.11	-1.89
850 u-wind	-2.72	-1.84
925 u-wind	-2.18	-1.48
200 v-wind	-3.11	-2.11
300 v-wind	0.3	-1.48
500 v-wind	-0.78	-1.95
700 v-wind	-1.65	-1.42
850 v-wind	-1.81	-2.03
925 v-wind	-1.81	-2.55
200 RH	-2.29	0
300 RH	1.87	-1.11
500 RH	-0.81	-0.45
700 RH	-0.75	-0.84
850 RH	-1.63	-1.33
925 RH	-0.92	-0.31

Comprehensive Evaluation of Relative RMSE in current and potential future observing systems

Reduction in forecast error of 1-5% across several variables

26-Jan-2017