

American Meteorological Society

14th Conference on Polar Meteorology and Oceanography Seattle, WA. 22-26 January, 2017 Poster Session Part 3, Poster #1307, 25 January 2017

Introduction

National Climate Assessment (NCA). The U.S. NCA [Melillo et al., 2014] acts as a national climate snapshot or status report. Climate "indicators" for the NCA are meant to provide a clear and concise way of quantifying the status and trends of various elements of the climate system and their biological significance.

Northwest Passage (NWP) and Northern Sea Route (NSR). The NWP and NSR are sea routes across portions of the Arctic Ocean that connect the Atlantic and Pacific Oceans. The NWP passes through the Canadian Arctic Archipelago, and the NSR passes north of Russia.

Navigability indicators. We are in the process of constructing navigability indicators for the NWP and NSR that indicate the percentage of the route's length that is free enough of sea ice to allow the passage of a ship. The navigability indicators change daily as sea-ice conditions change.

Arctic marine mammals. All seven of the marine mammal species that live in the Arctic year-round (beluga, narwhal, bowhead whale, ringed seal, bearded seal, walrus, and polar bear) occupy portions of both the NWP and the NSR. We are in the process of identifying and mapping key areas of their habitat that intersect the routes of the NWP and NSR, to see which species might be impacted by increased shipping and industrial development as Arctic sea ice continues to decline.

Methods

Sea-ice data. We use daily sea-ice concentration products derived from the Advanced Scanning Microwave Radiometer for the Earth Observing System (AMSR-E) on NASA's Aqua satellite, obtained from the Centre for Marine and Atmospheric Sciences (ZMAW) in Hamburg, Germany [Spreen et al., 2008]. Data are mapped to a polar stereographic grid with 6.25-km grid size, and are available from June 2002 to October 2011. AMSR-2 and other data will be used to extend results beyond 2011.

Navigability indicators. We outline the routes of the NWP and NSR on a base map using ArcGIS, extract the sea-ice data from within the route boundaries, and calculate the navigability indicators from the time series of sea-ice data within the routes.

Arctic marine mammals. Data on home ranges of Arctic marine mammals have been gleaned from more than 100 peer-reviewed journal articles. We focus on June-October, the most likely months for shipping activity through the NWP and NSR.

Results

Navigability indicators. We illustrate the method for one particular route of the NWP (Fig. 1) with sea ice shown for August 15, 2009. The sea-ice concentration as a function of distance along the route (Fig. 2) shows that the route is blocked in Viscount Melville Sound. The percentage of the route that is open from June-October, 2002-2011, is shown in Fig. 3.

Arctic marine mammals. Home ranges of bowhead whales, belugas, and narwhals in September are shown in **Figs. 4, 5, 6,** along with routes of the NWP. Table 1 lists specific populations and abundance estimates.

Fig. 1. One route of the NWP (purple curve) and sea-ice concentration on August 15, 2009.

Fig. 4. Combined bowhead whale home ranges in September (beige) and one route of the NWP (cross-hatched).

At the request of AMS we include the following: 1. Observations that are needed to benefit future research High resolution daily sea-ice data with complete Arctic coverage; surveys and tracking of Arctic marine mammal populations; ship tracks. 2. Instruments that are needed to make these observations Satellite instruments like AMSR-2 or better; long-lasting telemetry devices for Arctic marine mammals; open database of ship tracks. 3. The greatest observational needs for this discipline in general Surveys and tracking of Arctic marine mammals.

Navigability Indicators for the Northwest Passage and the **Northern Sea Route**

sea ice concentration (%) Alaska Canada

distance along route (km) for the route in Fig. 1 on August 15, 2009.

Fig. 5. Beluga home ranges in September for two distinct populations, and one route of the NWP (cross-hatched).

ulation	July	Aug	Sept	Oct	Range confidence	Abundance (CI or CV) from Laidre 2015	CAFF Abundance	CAFF Status	CAFF Trend	Trend from Laidre 2015	Harvest
ng -Chukchi-Beaufort seas	good	good	good	good	connuence	16892 (CI 15704-18928)	16,892 (95% CI 15,704– 18,928)	Reduced	Increasing	increasing	s
ern Canada-West Greenland	good	good		good		>6500	6,745 (CV 0.22)	Reduced	Increasing	increasing	S
bard-Barents Sea	8000	8	8000	0000	incomplete	<100	6,745 (67 6.22)	Reduced	Unknown	unknown	none
otsk Sea					incomplete	<400	N/A - not included	N/A - not included	N/A - not included	unknown	none
ava					incomplete	32 (CI 0-94)	32 (95% CI 0 – 94)	Reduced	Unknown	unknown	S
ern Hudson Bay	good	good		good		3351 (Cl 1552-7855)	3,351 (95% CI 1,552-7,855)	Reduced	Stable	stable	S
stern Hudson Bay	good	good	fair	incomplete		57300 (Cl 37700-87100)	57,300 (95% CI 37,700-87,100)	Not Reduced	Unknown	unknown	S
es Bay	good	fair	fair	fair		14967 (Cl 8316-26939)	14,967 (95% CI 8,316-26,939)	Not Reduced	Unknown	unknown	S
gh Arctic-Baffin Bay	good	good	good	good		21200 (CV 0.25)	21,200 (CV 0.25)	Reduced	Unknown	unknown	S
berland Sound	fair	fair	fair	fair		1547 (Cl 1187-1970)	1500	Reduced	Decreasing	unknown	S
rian and W Chukchi seas					incomplete	unknown	Unknown	Unknown	Unknown	unknown	S
ern Beaufort Sea	good	good	good	fair		39258 (CV 0.23)	41800	Not Reduced	Unknown	unknown	S
ern Chukchi Sea	good	good	good	good		3700	3700	Unknown	Unknown	unknown	S
tol Bay	good	good	fair	good		2877 (CV 0.23)	2877	Not Reduced	Increasing	increasing	S
dyr	fair	fair	fair	fair		15127 (CI 7447-30741)	15,127 (95% CI 7447 -30741)	Unknown	Unknown	unknown	S
te Sea					fair	6498 (CI 4664-8818)	6,498 (95% CI 4,664-8,818)	Unknown	Decreasing	declining	none
a & Laptev Seas					incomplete	unknown	Unknown	Unknown	Unknown	unknown	none
ern Bering Sea	fair	fair	fair	fair		18000	18000	Unknown	Unknown	unknown	S
otsk Sea					incomplete	12226 (CV 6.8)	N/A - not included	N/A - not included	N/A - not included	unknown	none
bard					fair	unknown	Unknown	Unknown	Unknown	unknown	none
k Inlet	good	good	good	good		315 (CV 0.13)	N/A - not included	N/A - not included	N/A - not included	declining	none
awrence Estuary					fair	979 (CV 0.14)	N/A - not included	N/A - not included	N/A - not included	declining	none
thern Hudson Bay	incomplete	good	fair	fair		12485 (CV 0.26)	12,485 (CV 0.26)	Not Reduced	Unknown	unknown	ç
ose Sound	incomplete	good		good		20225 (Cl 9471-37096)	10,489 (CV 0.24)	10,489 (CV 0.24)	Unknown	unknown	5
niralty Inlet	incomplete	good		good		18048 (CI 11613-28053)	35.043 (CV 0.42)	Not Reduced	Stable	unknown	s s
ville Bay	incomplete	good	-	fair		6024 (Cl 1403-25860)	3,091 (95% CI 1,228-7,783)	Reduced	Stable	unknown	5
efield Bredning	incomplete	good	Idii	Iall	incomplete	8368 (CI 5209-13442)	8,368 (95% CI 5209-13,442)	Reduced	Stable	unknown	5
							12,694 (CV 0.33)	Not Reduced	unknown	unknown	5 C
es Sound/Smith Sound	fair	acad		and	incomplete	unknown		Not Reduced	Stable	unknown	s c
erset Island	fair	good	good	good	:	27656 (9080-66061)	49,758 (CV 0.20)				5 C
Greenland		f _:-	f :	f	incomplete	6444 (Cl 2505-16575)	6,444 (95% CI 2505-16,575)	Unknown	Unknown	unknown	3
esby Sound	incomplete	fair	fair	fair		unknown		Linka avan	Unimerum		
bard					incomplete	unknown	Unknown	Unknown	Unknown	unknown	none
ern Baffin Island					incomplete	10073 (CI 5333-17474)	17,555 (CV 0.35)	Not Reduced	Stable	unknown	S

2017 AMS Theme: Observations Lead the Way

This work is funded by the NASA program *Climate* Indicators and Data Products for Future National Climate Assessments, grant NNX16AG33G, PI: H. Stern.

Harry Stern, Kristin Laidre, Donna Hauser, and Richard McGovern

Polar Science Center, Applied Physics Laboratory University of Washington, Seattle, WA, USA

harry@apl.washington.edu

lied Physics Laboratory ERSITY of WASHINGTON

Fig. 3. Percent of route with < 15% sea-ice concentration vs. time, for 2002-2011.

Fig. 6. Combined narwhal home ranges in September (beige) and one route of the NWP (cross-hatched).

Cable 1. Bowhead, beluga, and narwhal populations

n the Arctic. The columns July-Oct indicate our onfidence level in the home range boundaries for that nonth, based on literature review. CAFF is Conservation of Arctic Flora and Fauna (www.caff.is). The last olumn indicates whether the population is subject to ubsistence harvest (S) or not. Most population trends re unknown due to infrequent surveys.

References

aidre, K.L., H. Stern, K.M. Kovacs, L. Lowry, S. Moore, E.V. Regehr, S. erguson, Ø. Wiig, P. Boveng, R.P. Angliss, E.W. Born, D. Litovka, L. Quakenbush, C. Lydersen, , D. Vongraven, and F. Ugarte, 2015. Arctic marine nammal population status, sea ice habitat loss, and conservation recommendations or the 21st century, Conservation Biology, DOI: 10.1111/cobi.12474.

Melillo, Jerry M., Terese (T.C.) Richmond, and Gary W. Yohe, Eds., 2014. Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, 841 pp. doi:10.7930/J0Z31WJ2. http://nca2014.globalchange.gov/

Spreen, G., L. Kaleschke, G. Heygster, 2008. Sea Ice Remote Sensing Using AMSR-E 89 GHz Channels, J. Geophys. Res., 113, C02S03, doi:10.1029/2005JC003384.

Acknowledgements

