Meteorological and Microphysical Controls on the Stratocumulus to Cumulus Transition

Johannes Mohrmann and Isabel L. McCoy
University of Washington Department of Atmospheric Sciences

University of Washington

Atmospherlc Sciences

Summary Seasonal Means Inter-Trajectory Correlations

Geostationary satellite cloud observations and meteorological reanalysis are combined with air S U —— Sl l—— S —
parcel trajectories to create a large Lagrangian dataset for investigating marine boundary layer = = & ) o8 & If cloud evolution along a trajectory (as measured by
cloud evolution. B2 L ' changes in CF or CTH), is controlled by EIS or N, we
Spatial correlations of seasonal mean quantities show that EIS (estimated inversion strength) and to - | ) \ R ‘ expect a correlation between EIS/N, and CTH/CF

a lesser extent N (cloud droplet number concentration) are closely related to cloud fraction - AN S - changes. We only find a correlation for CF and N,
Composite trajectories show the expected declines in EIS, cloud fraction, and N. o s ™ (Figure 7; negative A means CF decrease).
Correlations found when comparing across trajectories were weak or opposite to expected, with » e A 5 : We refine our analysis by considering changes in

higher EIS and N, anomalies correlating with larger changes in cloud fraction. — — anamaliesiof CF/Cli by subtracting seasonalimean —10 10 '100 150
| | | i | 1 _ 1 1 1 1 e
o - . - - - o0 | = 50 % i values at each location. This controls for variations Initial EIS Initial N,

cloud fraction N (cm=3) CTH (km) in trajectory length and start location (Figure 8). Figure 7: correlations b.etween 3-dz.;\y cloud

M OtivatiO N an d Ba Ck roun d LT 13T 10T Correlations exist between anomalies sampled at fraction change and trajectory SEIRdInE EIS

g Figure 4: Mean values over July/August 2015 of (a) cloud SO points along trajectories (not considering Lagrangian Fly el (o) [izel eleis imells eemiele
* Subtropical marine cloud evolution (in particular the transition of boundary layer (BL) clouds from fraction, (b) cloud droplet number concentration (c) cloud —— . s changes), particularly for Ny and CF (Figure 10). .
stratocumulus to cumulus) is thought to be primarily controlled by the lower tropospheric top height, and (d) estimated inversion strength. (a, b, c) As a final refinement we consider residual changes 1.0
stability!>®1%, which can also be quantified using the estimated inversion strength (EIS)"!. are from GOES VISST, (d) is from ERA-Interim B N in anomalies. After accounting for red noise effects,
Microphysical cloud properties, namely the cloud droplet number concentration (N4), may play a as we expect all anomalies to decay to zero.
secondary role in affecting cloud evolution!?7.11 though with no consensus on the direction of this , , - Following Eastman et al. (2016), we remove the 0.0
! N gl | Table 1: Spatial correlations | : : . -

effect d between variables from predicted change in anomaly given the initial .
While a Lagrangian perspective is preferred to capture cloud evolution, previous observational studies : 0.74 , _ | ] anomaly. We still find only weak anticorrelations 0o
. o : seasonal means. Consistent with : . |

have been limited by data scarcity in the remote marine BL. . -0.85 | i cting literaturel291011 between residual CF change and EIS/N, anomalies G i
Observations made during the Cloud Systems Evolution in the Trades (CSET) field campaign provide a 8 . (Figure 9). Initial EIS |n?na| (h?f)

much larger than previously available dataset for exploring Lagrangian cloud evolution. 0.6 : : ! Figure 8 asin Flgure 7 aut for anomahes
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in-situ BL cloud property data in the Northeast Pacific (NEP) 0.00 ’ Figure 10: correlations between cloud fraction anomalies 50 050

Data from cloud probes were used to validate satellite CDNC (cm™?) and EIS anomalies (a) and Ny anomalies (b), sampled from Initial EIS.4 Initial (Na).a
180°  165°W 135°W 120°W 0.4} trajectories once per day (4 points per trajectory) Figure 9: as in Figure 8 but for residual
@y . - L 03l f O * cloud fraction anomaly change
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retrievals of N, products (Figure 1)
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algorithm and GOES (Geostationary Operational A ! Figure 5: Mean (black) and 25t- and 75t"-quartiles (grey)
Environmental Satellite) measurements were provided o Y of trajectory evolution: (a) cloud fraction, (b) cloud droplet
hourly for the duration of CSET (two months)34], e v o R number concentration, (c) cloud top height, and (d)
including cloud fraction (CF), cloud top height (CTH), ; R estimated inversion strength. Note that N, is daytime only

and N, (Figure 2 shows an example); certain retrievals were i el S
daytime only. y Mean behavior is as expected: deepening and breakup of cloud,

. . 10 20 and declining N with decreasing EIS along the trajectory!10.11l :
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