

The Impact of Laterally-entrained Midlevel Dry Air on the Establishment of Persistent Deep Convection in Tropical Disturbances Charles N. Helms¹ (chip.helms@gmail.com), Christopher A. Davis², Jason P. Dunion³, and Lance F. Bosart¹

Fig. 1. Profiles of relative humidity and comoving winds calculated from dropsondes released (a) in the pre-Gabrielle (2013) disturbance and (b) in a nondeveloping tropical disturbance designated P27L (2010). Relative humidity is calculated with respect to ice above the freezing level.

Fig. 2. Infrared satellite images of (a) the pre-Gabrielle (2013) disturbance and (b) the nondeveloping P27L (2010) disturbance The wind barbs indicate the comoving wind at the level with the lowest relative humidity between the freezing level and 300 hPa. The orange squares indicate tropical overshooting tops within the last 3 h (Monette 2013) and the yellow stars indicate the 700-hPa pouch positions. The locations of the soundings in Fig. 1 are indicated by the magenta circles.

¹SUNY Albany, Albany, New York; ²National Center for Atmospheric Research; ³NOAA/AOML/Hurricane Research Division

Schematic representations of a convectively active

4. Idealized Model Experiment Setup

5. Simulated 2–6-h Mean Cross Sections

Fig. 5. Mean cross sections of relative humidity (shading), winds, and condensate for simulation the DAIP between (a) 6 and 8 km and (b) 4 and 6 km. The top row depicts the simulations wit dry-air layer, while the bottom row depicts the simulations with a dry-air layer. The black line indicated 1 g kg⁻¹ cloud liquid mixing ratio and the orange-shaded contours indicate the updraft speed (con in 2 m s⁻¹ intervals beginning with 2 m s⁻¹). The solid thin (thick) blue, red, and purple contours in the 1 g kg⁻¹ (3 g kg⁻¹) rain water, snow, and graupel mixing ratios.

Fig. 6. As in Fig. 5, except shading indicates the percentage of time when the upward vertical exceeds 2 m s⁻¹ between 2 and 6 h into the simulation and the mean updraft speed is indicated green contours (contoured in 2 m s⁻¹ intervals beginning with 2 m s⁻¹).

6 hour simulations using CM1 model (Bryan and Fritsch 2002)

100-km x 100-km x 25-km domain, open boundaries

250-m horizontal grid spacing, 250-m average vertical grid spacing (stretched) Morrison microphysics with graupel

No radiation, surface fluxes, or Coriolis force

Sounding: 2nd Hurricane Nature Run (Nolan et al. 2013; Nolan and Mattocks 2 Idealized wind profile

Dry air removed by moistening layer under constant virtual temperature

DAIP altitude changed by removing DAIP and pasting DAIP relative humidity Convection forced with persistent convergence in lowest 1 km

	6. Simulation Results
	DAIPs tend to have the following impacts:
	weaker updrafts (Fig. 5)
d)	reduce condensate (Fig. 5)
,	reduce updraft persistence (Fig. 6)
	DAIPs at a lower altitude have a stronger
2014)	detrimental impact on deep convection (Figs. 5, 6)
	likely resulting from two key factors:
	Specific humidity deficit is greater at a lower
profile	altitude for a given relative numidity
	borizontal wind has a greater impact
	Stronger DAIP winds result in less condensate
80 90 100	(Fig. 5), which impacts the disturbance by the
P wind: 5 m/s	following process:
	Less condensate leads to less stratiform cooling
	Less stratiform cooling produces less midlevel
	vorticity generation
	Reduced midlevel vorticity generation inhibits
10 20	midlevel vortex formation
80 90 100	Without a strong midlevel vortex to protect the
P wind: 5 m/s	convection, the DAIP continues to interfere with
	deep convection
	7. Summary
	Examined Dry Air Inflow Pathways (DAIPs) using
	both observations and idealized modeling
	Key findings:
ns with thout a	DAIPs appear to inhibit the establishment of
ites the	persistent deep convection
ntoured	DAIPs at a lower altitude or with stronger winds
ndicate	have a stronger detrimental impact on deep
	convection
[6] 80 90	DAIP inflow and dry air components appear to
P wind: 5 m/s	be of similar importance
	8. References
	Bryan, G. H., and J. M. Fritsch, 2002: A benchmark simulation for moist nonhydrostatic numerical models. <i>Mon. Wea. Rev.</i> , 130, 2917–2928.
	Monette, S. A., C. S. Velden, K. S. Griffen, and C. M. Rozoff, 2012: Examining trends in satellite-detected tropical overshooting tops as a potential predictor of tropical cyclone rapid intensification. <i>J. Appl. Meteor. Climatol.</i> , 51 , 1917–1930.
10 20 %] 80 90	Nolan, D. S., R. Atlas, K. T. Bhatia, and L. R. Bucci, 2013: Development and validation of a hurricane nature run using the Joint OSSE Nature Run and the WRF model. <i>J. Adv.</i> Model, Forth Syster 5, 1, 24
P wind: 5 m/s	Nolan, D. S., and C. A. Mattocks, 2014: Development and evaluation of the second
	hurricane nature run using the Joint OSSE Nature Run and WRF model. <i>Extended Abstracts, 31st Conf. on Hurricanes and Tropical Meteorology</i> , San Diego, CA, Amer. Meteor. Soc., P91.
	Wang, Z., 2014: Role of cumulus congestus in tropical cyclone formation in a high-resolution numerical model simulation. J. Atmos. Sci., 71, 1681–1700.
	9. Acknowledgments
motion	This work is funded through NASA's Hurricane Science Research Program under grant
l by the	#NNX12AK63G (HS3), through NSF under grant #AGS0935830 (PREDICT), and through NOAA under grant #NA14OAR4830172 (UAS). The authors would also like to acknowledge high-performance computing support from Yellowstone (ark:/85065/d7wd3xhc) provided by NCAR's Computational and Information Systems Laboratory, sponsored by NSF.

P971