Utilizing Surface Pressure to Detect and Analyze Mesoscale Pressure Perturbations

Alexander A. Jacques (alexander.jacques@utah.edu), John D. Horel, and Erik T. Crosman
Department of Atmospheric Sciences, University of Utah

Project Overview and Objectives

- Primary Objective: spatially assess and detect prominent mesoscale pressure perturbations using 5-min perturbation analysis grids
- Analysis grids produced by combining high-temporal resolution observations from USArray Transportable Array (TA) with high-resolution spatial grids from Real-Time Mesoscale Analysis
- Period of Study: 1 Mar – 31 Aug 2011
 - TA located over central Great Plains during period of interest
 - Jacques et al. (2015, MWR) assessed prominent mesoscale activity during period via time-series analyses of 1 Hz TA observations
 - Project demonstrates feasibility for incorporating more observation resources

USArray Transportable Array (TA)

- Component of extensive EarthScope field campaign: 400+ seismic stations
- Platform installation strategy based on >70 km quasi-grid across CONUS
- Each platform deployed for 1-2 yr, then retrieved and redeployed further east
- 2010: atmospheric pressure sensors installed (1 and 40 Hz sampling)

TA Meteorological Data Resources

<table>
<thead>
<tr>
<th>Resource</th>
<th>Type</th>
<th>Access</th>
</tr>
</thead>
<tbody>
<tr>
<td>MesoWest Maps/Graphs</td>
<td>Real-time</td>
<td>http://meso1.chpc.utah.edu</td>
</tr>
<tr>
<td>Integrated MET</td>
<td>Real-time</td>
<td>http://mesowest.utah.edu</td>
</tr>
<tr>
<td>NOAA WAFES System</td>
<td>Real-time</td>
<td>https://wafes.noaa.gov/</td>
</tr>
<tr>
<td>Research Archive Visuals</td>
<td>Real-time</td>
<td>http://meso1.chpc.utah.edu/usarray</td>
</tr>
<tr>
<td>NCAR EDA Archive</td>
<td>Archived</td>
<td>http://dx.doi.org/10.5065/D6Q45TPR</td>
</tr>
</tbody>
</table>

Mesoscale Feature Detection

1) Surface pressure data collected and quality controlled:
 - TA observations (1 Hz temporal, ~70 km spatial resolution)
 - RTMA surface pressure grids (1 h temporal, 5 km spatial)
2) Grids (obs) interpolated (subsampled) to 5 min temporal resolution
3) Final analysis grids = blend of interpolated RTMA + TA obs
4) Analysis grids temporally band-passed (10 min – 12 h) to isolate mesoscale pressure perturbations
5) Prominent perturbation features identified and tracked
 - Must last ≥1 h, ≥10000 km², ≥1 hPa magnitude
 - Speed/direction assessed via modified MODE-TD method
6) Aggregated statistics for all features assessed 1 Mar – 31 Aug 2011

Multiple MCS Case (11-12 Aug 2011)

- Median distance to nearest real-time pressure observation (reporting frequency 15 min): 29.5 km
- The above only considers publicly available data (no inclusion of private or NOAA-only weather stations)
- Incorporation from diverse resources more feasible compared to other state variable measurements
 - Fewer installation concerns such as stinging (pressure not impacted unlike temperature and wind)
 - Many resources transmit data at intervals ≥ 15 min
 - Data disseminated to prominent resources (e.g. MesoWest, MADIS) with minimal latency

Incorporation of Additional Observation Resources

- Many publicly available pressure data resources now available in real-time from MesoWest and MADIS, with expansive coverage across CONUS
- Clear potential to utilize for operational detection of pressure perturbations

Summary and Conclusions

- Case studies demonstrate ability to effectively combine observations and grids to adequately detect prominent mesoscale pressure perturbations
- Many publicly-available surface pressure data resources now available in real-time from MesoWest and MADIS, with expansive coverage across CONUS
- Clear potential to utilize for operational detection of pressure perturbations

Acknowledgements and Resources

This research is funded by National Science Foundation Grant Number 1252315. We would also like to thank Dr. Frank Vernon of Scripps Institution of Oceanography, the USArray Array Network Facility (ANF), and the Incorporated Research Institutions for Seismology (IRIS) for providing access to the TA data for this work.

References

