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Methods All mechanisms underestimate measured HCHO by at least 0.5 — 1 ppb
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isoprene emissions  Constrained to aircraft observations
and chemistry Meteorology: P, T, and RH
Chemistry: NO, NO,, O,, CO, PAN, methane, methanol, and isoprene
Photolysis: j(O'D) and j(NO,)
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* [soprene chemistry is inconsistent among the gas-phase chemical
mechanisms used in chemical transport models

 Formaldehyde (HCHO) is a high-yield product of isoprene oxidation that

can be used to evaluate and compare mechanisms

P(O3) = K024n0lHO,][NO] + 6
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