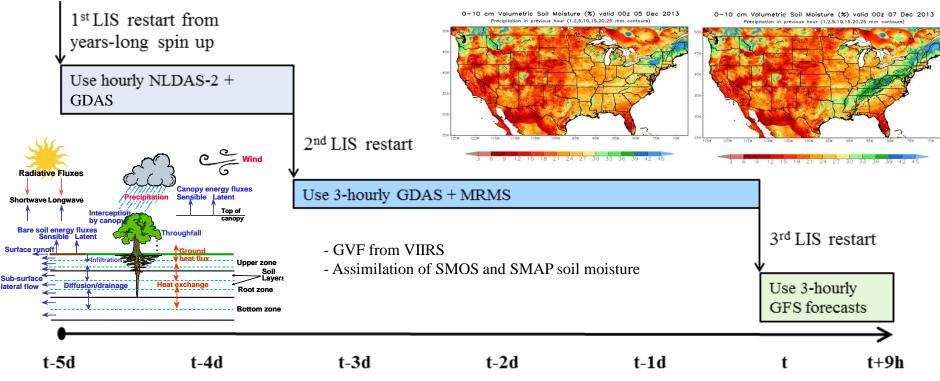
Assimilating Satellite-derived Soil Moisture and Ingesting Real-time Vegetation into WRF-Hydro using the NASA LIS

Nicholas Elmer^{1,5}, Clay Blankenship^{2,5}, Jonathan Case^{3,5}, Bradley Zavodsky^{4,5}, and Andrew Molthan^{4,5}

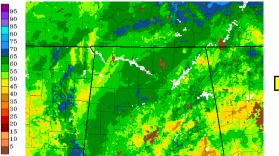
¹Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Ala. ²Universities Space Research Association (USRA) Space Technology, Institute, Huntsville, Ala. ³ENSCO, Inc., Huntsville, Ala.


⁴Earth Science Office, NASA MSFC, Huntsville, Ala.

⁵NASA Short-term Prediction Research and Transition (SPoRT) Center, Huntsville, Ala.

January 24, 2017 31st Conference on Hydrology 97th AMS Annual Meeting, Seattle, Wash.

Operational SPoRT LIS

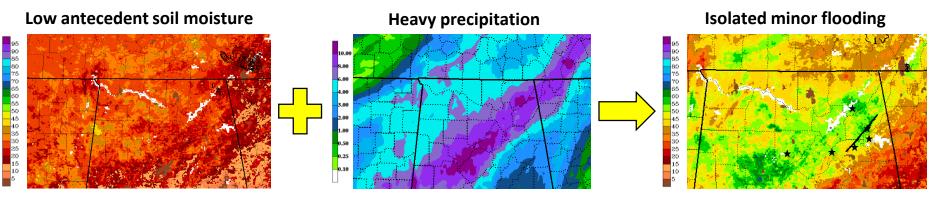

CONUS, 3-km resolution

- NASA LIS (Kumar et al. 2006; Peters-Lidard et al. 2007) used to perform longterm integration of Noah Land Surface Model (LSM) updated in real-time
- Assimilation of soil moisture gives even more accurate LSM soil moisture fields
 - Currently undergoing operational assessment
- Output used for situational awareness and local modeling by forecasters at select NWS offices and international forecasting agencies

Application: Areal Flood Potential

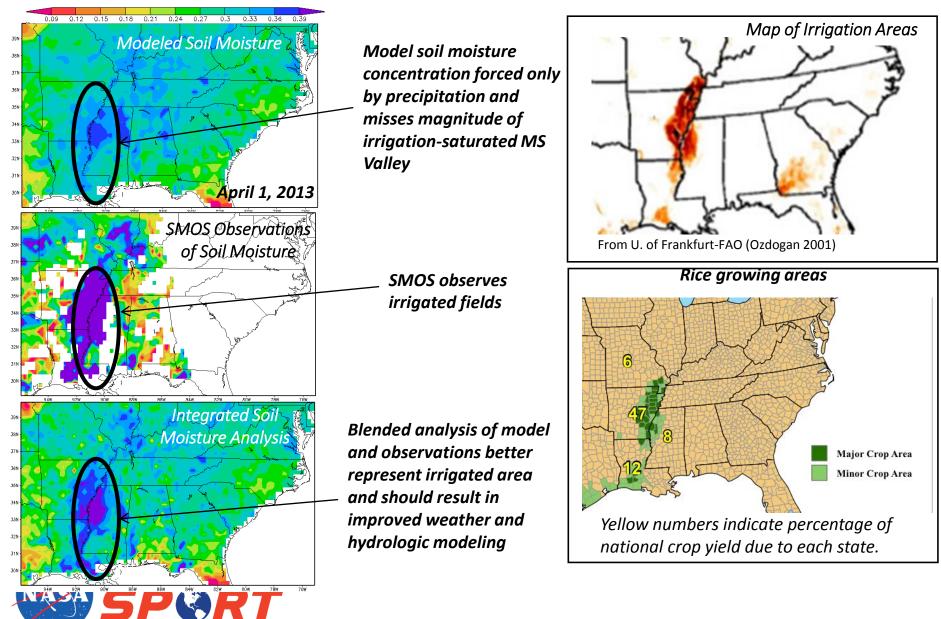
March

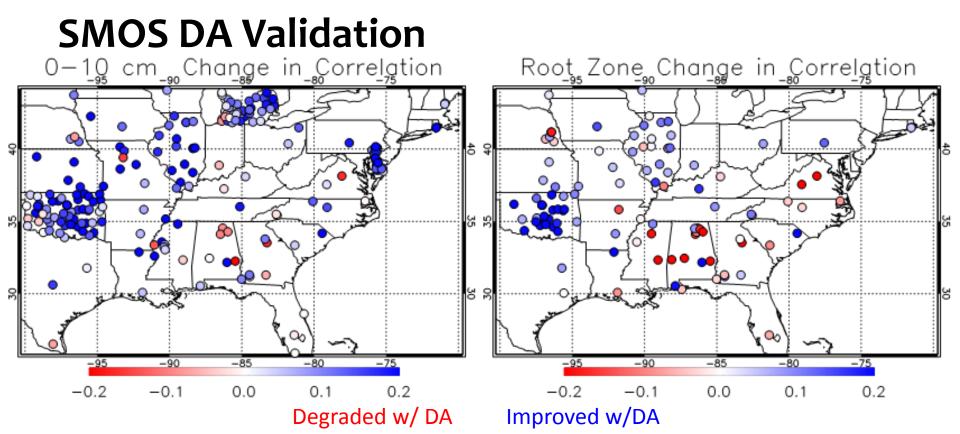
Moderate antecedent soil moisture



Moderate-heavy precipitation

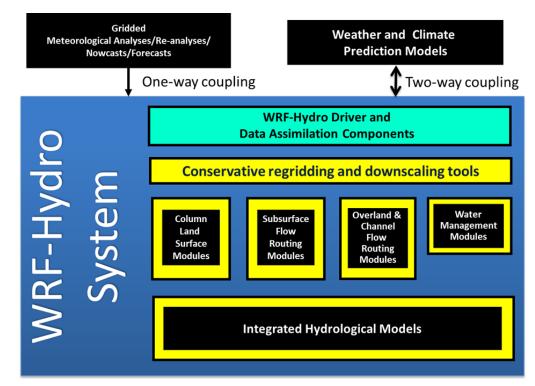
Moderate river flooding and numerous flooding reports


September



- Contrasting antecedent soil moisture likely played a strong role in the different outcomes
- Local, subjective analysis of several events suggests typical moderate-heavy synoptic rainfall events over deep-layer relative soil moisture values exceeding 55-60% will lead to more substantial moderate or heavier flooding events

Assimilation of Soil Moisture Data


Variable	0-10 cm Soil Moisture				
# Stations	194				
Experiment	OPL	NOBC	BC1	BCS	BCV
Bias	-0.000 ± 0.011	-0.026 ± 0.011	-0.023 ± 0.011	-0.005 ± 0.011	-0.025 ± 0.011
RMSE	$\textbf{0.082} \pm 0.005$	0.087 ± 0.006	0.086 ± 0.005	$\textbf{0.082} \pm 0.005$	0.087 ± 0.006
Unbiased RMSE	0.046 ± 0.003	0.043 ± 0.002	0.043 ± 0.002	0.044 ± 0.003	$\textbf{0.043} \pm 0.002$
Correlation	0.451 ± 0.023	$\textbf{0.573} \pm 0.027$	0.569 ± 0.026	0.539 ± 0.025	0.561 ± 0.026

Assimilation of SMOS using soil classification bias correction results in best overall configuration for bias, RMSE, and r²

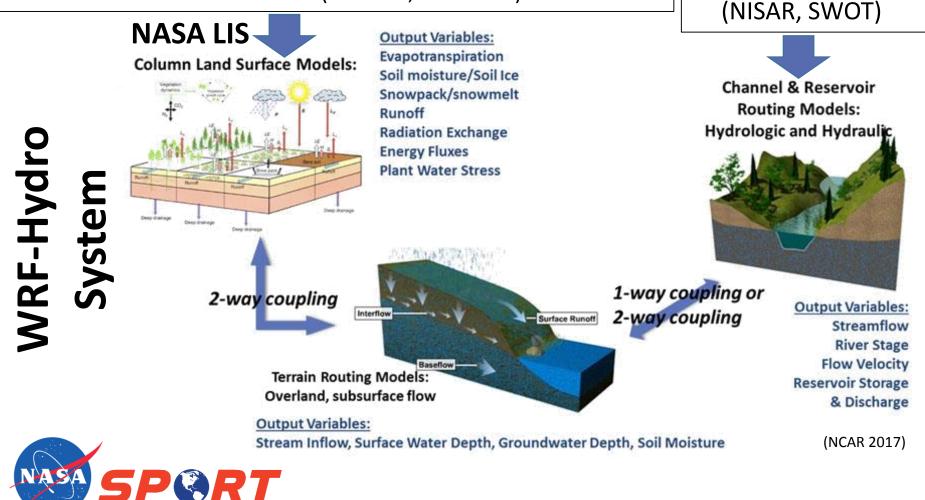
WRF-Hydro System

- Weather Research and Forecasting model hydrological extension package (WRF-Hydro; Gochis et al. 2013)
- Extensible, high-resolution hydrologic routing and streamflow modeling framework
- Contains column land surface, terrain routing, and channel routing modules
- Operational National Water Model (NWM; Office of Water Prediction 2017) is instantiation of WRF-Hydro

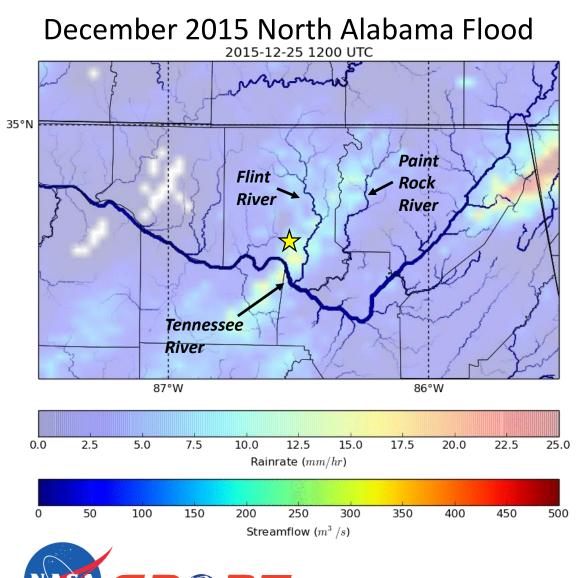
(NCAR 2017)

Coupling NASA LIS and WRF-Hydro

- Collaborative project between NASA GSFC and NCAR (Santanello et al. 2015)
 - Funded by NASA's Modeling, Analysis, and Prediction (MAP) program
 - Couple LIS and WRF-Hydro in the Earth Science Modeling Framework (ESMF), which will enable operational linking of these two systems
- Plan to leverage this project to assimilate/integrate NASA mission datasets in WRF-Hydro using the LIS Ensemble Kalman Filter (EnKF)

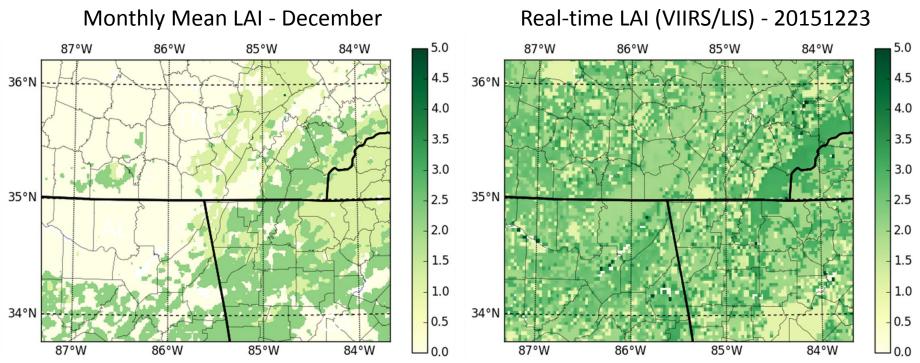


Assimilation of SMAP/SMOS into WRF-Hydro


Inundation and

Streamflow

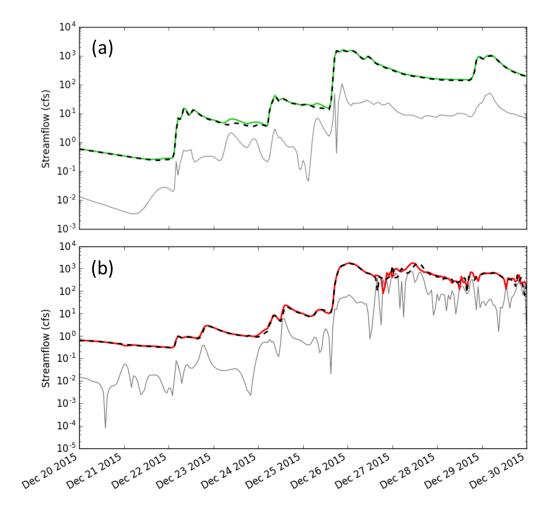
- Soil moisture (SMAP/SMOS)
- Snow cover (MODIS/VIIRS) and snow water equivalent (AMSR2)
- Total terrestrial/ground water (GRACE/GRACE-Follow On)
- Other future NASA missions (ICESat-2, Landsat-9)


Evaluating LIS fields in WRF-Hydro

- Noah-MP initialized with SPORT-LIS soil moisture, soil temperature, surface skin temperature, and vegetation fraction
- Multi-Radar Multi-Sensor (MRMS) 1-hr gauge corrected accumulated precipitation (background field; mm hr⁻¹)
- "Cold start" of hydrological model (i.e., streambeds initially dry)
- Next steps: calibrate and spin-up

Elmer et al. (2017), Monday afternoon poster session, 19.

Impacts of Real-time Vegetation


- Ongoing project to quantify impact of VIIRS real-time vegetation on simulated soil moisture and streamflow
- Larger deviations from climatology likely in early spring and late fall

(Elmer et al. 2016)

Impacts of Real-time Vegetation

- 20-29 December 2015 modeled streamflow
- climatological GVF (dashed black line) and real-time VIIRS GVF (solid green/red line)
- Absolute difference (gray solid line)
- Replacing climatological GVF with real-time GVF results in approximately 1% change in streamflow (i.e., minimal impact for high-flow event)
- Greater differences expected for low-flow events

(Elmer et al. 2016)

Summary and Future Work

- NASA LIS being coupled to WRF-Hydro by GSFC and NCAR
- LIS EnKF enables assimilation of satellite-based observations (e.g., SMAP, SMOS, MODIS, VIIRS, AMSR-2, ICESat-2, etc.)
- SPoRT is currently assimilating/ingesting satellite soil moisture and vegetation measurements into the operational SPoRT-LIS
- SPoRT-LIS to include Noah-MP LSM version, matching NWM
- In collaboration with the National Water Center (NWC), NASA SPoRT is developing an offline, experimental version of the NWM to evaluate the impact of current and future NASA mission datasets (e.g., SMAP soil moisture, VIIRS real-time vegetation)
- Currently, the NWM does not have a system for assimilating land surface satellite observations, but the LIS system is a strong candidate given both the long history of the LIS and its linkage through the ESMF

Nicholas Elmer nicholas.j.elmer@nasa.gov

NASA SPORT

Webpage: http://weather.msfc.nasa.gov/sport/

Blog: https://nasasport.wordpress.com/

Facebook: NASA SPoRT Center

Twitter: @NASA_SPoRT

<u>References</u>

- Blankenship, C. B., J. L. Case, B. T. Zavodsky, and W. L. Crosson, 2016: Assimilation of SMOS Retrievals in the Land Information System. IEEE Trans. Geo. Rem. Sens., **54**(11), 6320-6332, doi:10.1109/TGRS.2016.2579604.
- Elmer, N., B. Zavodsky, A. Molthan, J. Case, and C. Blankenship, 2016: Impacts of real-time satellite-derived vegetation on WRF-Hydro simulated streamflow. Abstract H51H-1618 presented at 2016 Fall Meeting, AGU, San Francisco, Calif., 12-16 Dec.
- Gochis, D., W. Yu, and D. Yates, 2013: The NCAR WRF-Hydro technical description and user's guide: version 1.0, 120 pp.,
- http://www.ral.ucar.edu/projects/wrf_hydro/images/WRF_Hydro_Technical_Description_and%20User_Guide_v1.0.pdf.
- Kumar, S. V., et al., 2006: Land Information System an interoperable framework for high resolution land surface modeling. *Environmental Modeling* & Software, **21**(10), 1402-1415, doi:10.1016/j.envsoft.2005.07.004.
- NCAR, 2017: WRF-Hydro Modeling System. Research Applications Library, https://www.ral.ucar.edu/sites/default/files/public/projects/wrf_hydro/. Office of Water Prediction, cited 2017: The National Water Model. Office of Water Prediction, http://water.noaa.gov/about/nwm.
- Peters-Lidard, C. D., et al., 2007: High-performance Earth system modeling with NASA/GSFC's Land Information System. *Innovations Syst. Softw. Eng.*, **3**(3), 157-165, doi:10.1007/s11334-007-0028-x.
- Santanello, Jr., J. A., S. V. Kumar, D. Gochis, C. DeLuca, C. D. Peters-Lidard, 2015: An integrated, observation-driven hydrological modeling system using LIS and WRF-Hydro enabled by ESMF. 2015 NASA Research Opportunities in Space and Earth Science Funded Proposal (NNH15ZDA001N-MAP), 21 pp.

