

Impact of assimilating pre-convective upsonde observations on shortterm forecasts of convection observed during MPEX

¹National Severe Storms Laboratory (NSSL), ²Colorado State University, Dept. of Atmospheric Science, ³Cooperative Institute for Mesoscale Meteorological Studies (CIMMS)

Question: Does the assimilation of balloonborne rawinsonde (upsonde) observations of T, rh, u, and v taken a few hours prior to subsequent Cl improve 1 – 9 h forecasts of convection?

When considering verification neighborhoods approximating the smallest resolvable scales of the 3-km grid (8 Δ): Four cases showed positive impacts, and four cases showed neutral to negative impacts

for two neighborhood/dBZ threshold combinations out to 7 h after CI ~12 km radius (8Δ), 40 dBZ

<u>Requirement</u>: At least three upsondes taken at least 1 h before CI, a 'clean slate' environment, and convection in both nature and in forecasts. Eight (8) MPEX cases qualified.

Fractions Skill Score (FSS) aggregated over all 8 cases for five neighborhoods and seven dBZ thresholds for 1h forecasts and 4 h forecasts after Cl

	FSS diff 60 min after Cl -0.07 -0.05 -0.03 -0.01 0.01 0.03 0.05 0.07										FSS diff 240 min after Cl -0.07 -0.05 -0.03 -0.01 0.01 0.03 0.05 0.07						
45	0.143 0.168	0.208 0.236	0.332 0.351	0.418 0.419	0.475 0.464	0.556 0.536	0.614 0.592		45	0.169 0.180	0.225 0.235	0.341 0.345	0.450 0.444	0.531 0.520	0.645 0.631	0.722 0.710	
40 Plo	0.254 0.257	0.321 0.322	0.443 0.425	0.526 0.488	0.579 0.530	0.643 0.590	0.686 0.630	plo	40	0.271 0.276	0.328 0.332	0.434 0.431	0.524 0.514	0.591 0.575	0.680 0.660	0.736 0.716	
Z thresh	0.310 0.302	0.372 0.359	0.478 0.445	0.551 0.500	0.598 0.538	0.652 0.587	0.684 0.616	Z thresh	35	0.364 0.359	0.417 0.411	0.510 0.498	0.583 0.565	0.636 0.614	0.703 0.679	0.742 0.719	
28p 30	0.340 0.326	0.394 0.376	0.484 0.451	0.547 0.500	0.588 0.534	0.637 0.577	0.666 0.603	dB2	30	0.446 0.428	0.493 0.474	0.571 0.549	0.634 0.609	0.682 0.656	0.743 0.721	0.780 0.762	
25	0.379 0.367	0.431 0.415	0.517 0.490	0.576 0.539	0.618 0.574	0.671 0.620	0.705 0.650		25	0.520 0.489	0.557 0.525	0.620 0.587	0.672 0.640	0.716 0.685	0.782 0.758	0.826 0.810	
	4 △	8 Δ	16 ∆	24 ∆	32 △	48 △	64 △			4 △	8 ∆	16 Δ	24 ∆	32 △	48 △	64 △	
	box width									box width							

Recommendation: Rapidly-deployable upper-air observing systems (w/rawinsondes, boundary-layer profilers, UASs) could be operational at select NWS offices to supplement the radiosonde network on potentially significant severe weather days!

For more details see: Coniglio, M., S. Hitchcock, and K. Knopfmeier, 2016: Impact of Assimilating Preconvective Upsonde Observations on Short-Term Forecasts of Convection Observed during MPEX. Mon. Wea. Rev., 144, 4301–4325

Michael C. Coniglio¹ **Stacey M. Hitchcock²** Kent H. Knopfmeier^{1,3}

Date	Region	Storm Type
May 18	Western KS	Tornadic supercells
May 19	Central OK	Tornadic supercells
May 20	Central OK	Tornadic to non-tornadic
May 23	Western TX	Tornadic supercell to M
May 27	Central KS	Tornadic and a weak su
May 28	Central KS	Tornadic supercell and I
May 31	Central OK	Tornadic supercell to M
June 8	SW KS/NW OK/TX	Squall line w/embedded

WIPEX, control, and their difference (color shading)

Main Result: Statistically significant Improvement in forecasts out 5-to-6 h seen when aggregating over all 8 cases for meso- β (and larger) scales, but some improvements seen in individual cases on scales close to the smallest resolvable scales of the grid.

<u>Results likely can be improved further</u>: Inspection of analysis increments on days with neutral to negative impacts near the grid-scale suggests that the sampling locations were sub-optimal for the convection of interest.

Data is being collected in 2016-17 using ensemble sensitivity analysis (ESA) to address this issue ("mini-MPEX") and further test impacts of radiosonde data compared to boundary-layer profiler data (from a Doppler Wind Lidar and an AERI).

locations approximately three hours after the final

radiosonde release for each day.