

Introduction

- Surface solar irradiance forecasts are largely influenced by cloud structure, dynamics, and radiative transfer that are modulated by cloud microphysical processes in the model.
- We studied 19 days with subjectively good initializations under deep convection, high, middle, and low cloud scenarios.
- We assessed the accuracy of the WRF irradiance forecasts by comparing them to irradiance derived from GOES visible and infrared channels, as well as a network of surface observations.
- We regridded the 1-km satellite-derived global horizontal irradiance (GHI) dataset (708 x 627 points) to a 1.8-km model mesh (420 x 354 points) using the inverse distance squared weighting method to enable quantitative analyses.
- Synthetic brightness temperature (Tb) imagery at 10.7 µm of simulated cloud fields was created from model runs using NCEP Unified Post Processor (UPP).

Cases studied

- Optically **thick** cloud scenarios ($\tau > 23$): 01 Mar 2014, 16 Nov 2015, 07 Jan 2016.
- Optically medium cloud scenarios (τ: 3.6-23): *low-mid* level (top>440mb): 03 Aug 2014, 05 Jan 2016, 04 Aug 2016, 08 Aug2016, 26 Aug 2015, 24 Aug 2015.

high level (top<440mb): 08 Sep 2015, 18 Feb 2016, 09 Sep 2015, 28 Oct 2015, 18 Jan 2016, 05 Mar 2016.

• Optically **thin** cloud scenarios (τ < 3.6): 11 Mar 2016, 23 Jan 2016, 23 Feb 2016, 29 Feb 2016.

Available observations

GOES-15 imagery-derived GHI images

- Horizontal grid spacing: **1 km**
- 708 x 627 points
- Algorithm: University of Arizona Surface Irradiance Based Satellite (UASIBS) (Kim et al. 2016)
- Derived from GOES-15 infrared and visible channel data
- See **Figure 2a** as a GHI map example.

Figure 3 shows its synthetic Tb imagery.

Surface GHI observations • 7 APS stations and 1 UA site

- (see **Figure 1** inset)
- Sampling interval:
- 3-min instantaneous values Averaging interval: 1 hour

Table 1. Model setup.				garación	Table 2. Microphysics schemes adopted.					
Model Settings		WRF	v3.7	Microphysics	Deferences	Mass Variable	Number Variab			
	Domain	D1	D1 D2		References					
	Horizontal grid spacing [km]	5.4	1.8	Goddard (GODD)	Tao et al. (1989)	Qc Qr Qi Qs Qg	N/A			
	Num of horizontal mesh	460 x 440	420 x 354	Milbrant-Yau	Milbrandt and Yau	Qc Qr Qi Qs Qg Qh	Nc Nr Ni Ns Ng N Nr Ni Ns Ng			
	Num of vertical layers	38 (model to	op: 100 hPa)	(MILB)	(2005)					
	Microphysics	va	ry (see Table 2)	Morrison (MORR)	Morrison et al. (2009)	Qc Qr Qi Qs Qg				
	Longwave radiation	RRT	MG	CAM5.1 (CESM)	Neale et al. (2012)	Qc Qr Qi Qs Qg	Nr Ni Ns Ng			
	Shortwave radiation	RRT	MG		Lin and Calls		NI/A			
	Land surface	No	ah	SRO-LTIN (SROT)	(2011)	QC Qr QI Qs	IN/A			
	Surface layer	Plein	n-Xiu		Lim and Hong	Qc Qr Qi Qs	Nn Nc Nr			
	Planetary boundary layer	ACM2 / `	YSU / BouLac *		(2010)					
	Cumulus convection	0	ff	WDM6	Lim and Hong	Qc Qr Qi Qs Qg	Nn Nc Nr			
	Landuse database	update	d USGS		(2010)		Ni Nr			
	Initialization	NAM 12km grid	ds, 1200 UTC cycle	Thompson (THOM)	Thompson et al. (2008, 2009)	Qc Qr Qi Qs Qg				
	Boundary conditions	one-way	nesting	Thompson aerosol-	Thompson and	Qc Qr Qi Qs Qg	Ni Nr Nwf Nif			
	Output interval	3 n	nin	aware (THOM-A)**	Eidhammer (2014)					

M/DE ADIM configuration

* PBL treatments exerted only secondary influences on the model forecast skill for this study.

** An auxiliary aerosol climatology (year 2001-2007) file was placed into WRF through the WPS program.

An Evaluation of Nine ARW-WRF Microphysics Schemes for Solar Power Forecast in Arizona

Yang Cao, William Holmgren, Michael Leuthold, Eric Betterton, Christopher Castro, Antonio Lorenzo, and Hsin-I Chang **Department of Hydrology & Atmospheric Sciences** The University of Arizona

model-generated 1.8-km GHI ("swdown") imageries were regridded onto a common 1.8-km horizontal grid spacing grid mesh.

• Verification time frames were defined as a time period when all satellite and model output GHI images have valid non-zero data coverage.

• Critical success index (CSI), mean absolute error (MAE), and mean bias error (MBE) were employed for satellite pixel-based validation and surface site-based validation. A is correct yes forecasts of an event of cloudiness (defined as when

pixel-based GHI falls below 90% of the clear sky GHI), B is false alarm $\mathbf{CSI} = \frac{1}{A+B+C}$ forecasts, and C is misses. CSI range: **0** (no skill) - 1 (perfect skill). $MAE = - \sum |GHI_{WRFi,j} - GHI_{obsi,j}|$ $MBE = \frac{1}{n} \sum_{i=1,j=1}^{n} (GHI_{WRFi,j} - GHI_{obsi,j})$

i: model pixel or site, j: time frame; n~ 3,270,960 for satellite-based validation; n~2328 for 3min-interval surface pyranometer-based validation.

case		CT (mb)	COD	GODD	MILB	MORR	CESM	SBUY	WDM5	WDM6	тном	THOM-A
	2014/3/1	332	26.1	69	68	68	79	72	69	69	67	63
optically	2015/11/16	567	25.2	54	57	54	58	57	55	54	52	50
thick	2016/1/7	436	23.7	74	76	75	79	79	74	73	71	67
	average	445	25.0	66	67	66	72	69	66	65	63	60
	2014/8/3	470	14.4	75	77	73	83	75	77	76	74	73
optically	2016/1/5	603	12.5	73	74	74	84	71	79	78	75	65
medium	2016/8/4	470	11.9	36	38	35	42	42	36	36	34	34
(low/mid	2016/8/8	505	11.7	27	28	29	31	30	29	25	24	22
	2015/8/26	453	10.3	39	38	38	41	39	37	38	35	33
level)	2015/8/24	458	6.8	31	32	32	31	34	30	28	31	29
	average	493	11.3	47	48	47	52	49	48	47	46	43
	2015/9/8	359	9.8	36	34	33	38	44	41	40	24	19
optically	2016/2/18	373	9.4	47	52	50	50	56	56	54	33	31
medium	2015/9/9	346	7.7	63	64	63	66	66	66	66	49	41
(high level)	2015/10/28	359	5.1	59	61	63	63	66	66	65	42	36
	2016/1/18	350	5.0	44	53	65	45	60	49	49	43	38
,	2016/3/5	400	4.9	34	32	39	40	40	48	49	23	20
	average	365	7.0	47	49	52	50	55	54	54	36	31
	2016/3/11	344	3.6	58	60	72	41	70	56	54	43	34
optically	2016/1/23	357	2.9	64	67	75	52	74	63	63	59	51
thin	2016/2/23	610	2.7	19	17	26	18	21	13	17	15	16
CIIII	2016/2/29	526	2.5	17	14	24	9	21	15	15	14	4
	average	459	2.9	40	40	49	30	47	37	37	33	26
average of	verage of all cases 438 10.3 48					52	50	54	50	50	43	38

Results

• CESM scheme performed well at forecasting deep convection and low-mid level cloud cover (CSI, **Table 3**), yet generally overpredicted cloud optical depth(**Table 4**). • Brightness temperature (Tb) PDFs show CESM substantially overpredicted middle and low clouds (240-285 K) when it exhibited a large negative bias (**Figure 4, Table 4**).

case		CT (mb)	COD	GODD	MILB	MORR	CESM	SBUY	WDM5	WDM6	тном	THOM-/
	2014/3/1	332	26.1	-48	-54	-53	-104	-89	-4	-6	11	47
optically	2015/11/16	567	25.2	48	30	45	27	36	66	66	47	65
thick	2016/1/7	436	23.7	19	3	22	-15	-20	50	52	62	92
	average	445	25.0	6	-7	5	-31	-24	37	38	40	68
ontically	2014/8/3	470	14.4	43	45	108	-41	53	94	87	82	157
	2016/1/5	603	12.5	22	10	5	-63	23	30	31	1	50
medium	2016/8/4	470	11.9	-19	-32	-16	-108	-54	-2	-6	0	19
(low/mid	2016/8/8	505	11.7	18	19	27	11	4	25	34	32	39
	2015/8/26	453	10.3	-18	-20	-16	-86	-26	-16	-16	-11	12
level)	2015/8/24	458	6.8	-42	-47	-44	-106	-69	-39	-37	-30	-9
	average	493	11.3	1	-4	11	-66	-12	16	15	13	46
optically medium	2015/9/8	359	9.8	67	75	85	71	45	63	69	109	120
	2016/2/18	373	9.4	66	51	67	62	41	48	52	100	107
	2015/9/9	346	7.7	-3	-10	-6	-80	-22	-8	-8	33	90
(high	2015/10/28	359	5.1	17	22	10	23	-16	-14	-12	72	78
level)	2016/1/18	350	5.0	67	52	10	73	22	60	60	75	82
,	2016/3/5	400	4.9	45	54	25	49	4	13	4	77	82
	average	365	7.0	43	41	32	33	12	27	28	78	93
	2016/3/11	344	3.6	47	50	-12	85	-14	55	55	85	94
ontically	2016/1/23	357	2.9	13	9	-46	50	-55	17	17	45	57
thin	2016/2/23	610	2.7	36	33	26	34	32	40	37	36	40
unn	2016/2/29	526	2.5	18	22	0	26	8	16	16	24	29
	average	459	2.9	28	29	-8	49	-7	32	31	48	55
average of	all cases	438	10.3	21	17	12	-4	-4	25	25	44	65

• THOM-A and THOM schemes tended to underpredict clouds at all circumstances (**Table 4, Figures 4, 5**).

• SBUY and MORR had close-to-zero event-averaged biases for thin cloud scenarios (Figure 5, Table 4), however, close inspection of the brightness temperature PDF indicates the two schemes produced excessive amount of ice at the cold end (< 240 K) of the temperature spectrum (**Figure 4**).

Yang Cao (sunnyyangcao@email.arizona.edu). **Acknowledgments:** We would like to thank James Moker for helping with the regridding scripts. We also appreciate the advice from Professors Robert Fovell, Xubin Zeng, Xiquan Dong and Baike Xi. This work was supported by Tucson Electric Power and Arizona Public Service.

• The verification results using the eight surface observation sites mostly resembled those using the satellite verification (**Figure 5**).

• For the thick cloud scenario, CESM and SBUY schemes had positive biases for the surface network verification.

• It is observed that most of the time, deep convection for the selected thick cloud cases mostly resided in the mountainous areas, so only a limited number of surface sites were affected by the thick cloud conditions and hence the three million pixelbased satellite verification should be more reliable.

• A uniquely superior bulk microphysics scheme does not exist for solar forecasting in Arizona.

• Most parameterizations tended to overpredict GHI for all cloud scenarios.

• MORR and SBUY had smaller biases for middle and high cloud scenarios.

• CESM scheme outperformed others at forecasting deep convection and low-level cloud cover, yet tended to overpredict cloud optical thickness.

• THOM and THOM-A schemes tended to underforecast cloud amount, especially for high clouds.

• THOM-A was found to dramatically overestimate cloud liquid-ice ratio (not shown). • Synthetic satellite imagery showed usefulness in helping evaluate and understand microphysical parameterizations.

Contact information: