Energetic and precipitation responses in the Sahel to sea surface temperature perturbations

Spencer A. Hill

Yi Ming, Isaac Held, Leo Donner, Ming Zhao

Motivations Severe uncertainty in rainfall response to anthropogenic warming

Fig. 1a, Park et al 2015 | Sahel P in RCP8.5 runs

Motivations GFDL AM2.1: uniform 2 K SST warming \rightarrow massive Sahel drying. Plausible?

AM2.1

JAS δP in 3 AGCMs in +2K experiments Fig. 5 of *Held et al 2005* | Warm colors=drying.

So for AM2.1 at least, full coupled response controlled by atmosphere response to mean SST warming

Energetic and precipitation responses in the Sahel to sea surface temperature perturbations

GFDL AM2.1: Mean SST warming dries Sahel via enhanced Sahara-Sahel MSE difference

Other models: MSE gradient-based drying mechanism robust & linked to climatological convective depth

Energetic and precipitation responses in the Sahel to sea surface temperature perturbations

GFDL AM2.1: Mean SST warming dries Sahel via enhanced Sahara-Sahel MSE difference

Other models: MSE gradient-based drying mechanism robust & linked to climatological convective depth

RAS vs. UW

Replacing AM2.1 convection scheme causes drying to disappear entirely

JAS δP in +2 K runs. Top: default, RAS. Bottom: UW convection. Default: Relaxed Arakawa Schubert (RAS)

Replacement: U. Washington (UW), *Bretherton et al. 2004* As configured for HiRAM

UW designed for shallow convection: more quiescent Whereas RAS very active

RAS vs. UW

Replacing AM2.1 convection scheme causes drying to disappear entirely

Focus on differences in large-scale control climate Rather than convective processes themselves

JAS δP in +2 K runs. Top: default, RAS. Bottom: UW convection. MSE budget Column integral: Energetic forcing balanced by circulation diverging MSE

$\overline{F}_{\rm net} \approx \left\{ \overline{\mathbf{u}} {\cdot} \nabla \overline{h} \right\} + \left\{ \overline{\omega} \partial_p \overline{h} \right\}$

Canonical tropical convection zone balance: $\overline{F}_{net} \approx \{\overline{\omega}\partial_p\overline{h}\}\$ Forcing drives deep moist convection, c.f. *Neelin and Held 1987*

Sahel control simulation: $\overline{F}_{net} \approx \{\overline{\mathbf{u}} \cdot \nabla \overline{h}\}\$ Forcing balanced primarily by northerly advection of dry, low-MSE Saharan air

MSE budget

+2 K: large RAS advection response; less impact on UW

RAS, horizontal

UW, horizontal

MSE budget

Sahel-Sahara MSE difference increases, which dries the Sahel

Enhances drying influence of Saharan inflow

Effectively "upped-ante" mechanism of Chou & Neelin

More so and over greater depth in RAS than UW Especially in mid- to upper-troposphere

Energetic and precipitation responses in the Sahel to sea surface temperature perturbations

GFDL AM2.1: Mean SST warming dries Sahel via enhanced Sahara-Sahel MSE difference

Other models: MSE gradient-based drying mechanism robust & linked to climatological convective depth

Other models

Do Sahel drying mechanisms in AM2.1 extend to other models?

7 GFDL model variants

AM2.1, AM2.1-UW, AM2.5, AM3, c90-AM3, HiRAM, c48-HiRAM

10 CMIP5 models

Those that ran "amip" and "amip4K"

Uniform SST perturbation: +2 K for GFDL; +4 K for CMIP5 But still δP still mismatch after normalizing

Other models Do Sahel drying mechanisms in AM2.1 extend to other models?

Sahel JAS rainfall reduction in 14 of 17 models! 3 outliers = GFDL variants using UW

And northerly dry advection enhanced in all

GFDL Saharan dry air advection into Sahel increases in ~all models

Colors correspond to Sahel δP : drying \rightarrow wettening

CMIP5 Saharan dry air advection into Sahel increases in ~all models

Not shown: again largely driven by the increase MSE difference

GFDL Ascent profile shallows in all models and relates to control convective depth

Sahel (left) control, (right) anomalous ω in GFDL models, same coloring as before

CMIP5 Qualitatively the same as for GFDL but with more scatter

Sahel (left) control, (right) anomalous ω for CMIP5, same coloring as before

Our claim Deeper convection in RAS enhances Sahel-Sahara MSE difference more

Schematic courtesy of Yi Ming | Notation: \overline{m} is MSE

Ocean warming and moistening communicated to free troposphere by convection Thus Sahel-Sahara MSE increase sensitive to convective depth

Reanalyses Sahel ascent profiles in three reanalyses are predominantly bottom-heavy

Non-negligible scatter; would like to understand better Potential contamination by convection scheme, by our arguments

All separated from GFDL and CMIP5 top-heavy outliers And those are among the worst drying models!

Energetic and precipitation responses in the Sahel to sea surface temperature perturbations

GFDL AM2.1: Mean SST warming dries Sahel via enhanced Sahara-Sahel MSE difference

Other models: MSE gradient-based drying mechanism robust & linked to climatological convective depth

AMS request Greatest obs need: better understanding of discrepancies among reanalyses

"Reanalyses MIP"?

I.e. run different reanalysis models w/ identical obs. data

And run each reanalysis product with the input data of the others (Not sure if this is feasible from technical standpoint)

Where to find this stuff

begin extra slides

Wide SST range

Study roles of large-scale circ. vs. physics by varying δSST

Sahel (vertical axis) P and (horizontal axis) $\overline{\mathbf{u}} \cdot \nabla \overline{h}$ in AM2.1 with uniform δ SST from -15 to +10 K. Control and +2 K outlined. RAS: P, P_{conv} , P_{ls} , E, and P - E decrease \sim monotonically w/ SST Only P shown here

UW: $P, \, P_{\rm conv}, \, {\rm and} \; E$ increase; $P_{\rm ls}, \, {\rm and} \; P - E$ decrease w/ SST

Not shown

So P_{conv} is key discrepancy And that UW E increases more rapidly than P

Ascent RAS: increased horizontal divergence balanced by anomalous subsidence

Anomalous subsidence drives anomalous MSE convergence by divergent flow

I.e. shallows convection and balances increased dry advection

Control | +2 K | difference

Ascent RAS: increased horizontal divergence balanced by anomalous subsidence

Leading order perturbation budget in free troposphere:

 $\overline{\mathbf{u}}{\cdot} \delta \nabla \overline{h} + (\delta \overline{\omega}) \partial_p \overline{h} \approx 0$

Rearrange:

$$\delta \overline{\omega} \approx -\frac{\overline{\mathbf{u}} \cdot \delta \nabla \overline{h}}{\partial_p \overline{h}}$$

Numerator positive all levels; $\partial_p \overline{h} = 0$ at ~650 hPa (not shown) Thus descent above, ascent below 650 hPa

Ascent RAS: more horizontal MSE divergence, less MSE divergence via subsidence

Dotted curve:

$$\delta\overline{\omega}\approx-\frac{\overline{\mathbf{u}}{\cdot}\delta\nabla\overline{h}}{\partial_{p}\overline{h}}$$

Sinking in free troposphere, ascent in boundary layer

Amounts to major shallowing of ascent profile

Ascent UW: anomalous free tropospheric descent, but more modest than RAS

Same qualitative response, despite weaker magnitude Sinking overcome by moistening influences of ocean warming

Diagnostic for $\delta\overline{\omega}$ from RAS doesn't work

Neglects forcing term; more important in UW

RAS vs. UW Deeper convection in RAS enhances Sahel-Sahara MSE difference more

Exacerbated by moist static stability effect

Little UW convection reaches mid-troposphere where most prone to suppression

Combined $\begin{bmatrix} \delta \overline{\omega} \text{ correlated with } \delta \overline{P} \text{ perfectly for GFDL,} \\ \text{insignificantly for CMIP5} \end{bmatrix}$

GFDL models | CMIP5 models | combined