
nabu: A distributed, parallel, data processing platform
Antonio T. Lorenzo*, William F. Holmgren+
College of Optical Sciences*, Department of Hydrology & Atmospheric Sciences+, University of Arizona

Introduction

Design

Dask.distributed

Scheduler

Host Server

GPU Server

Output

Static Plots

(matplotlib)

Web Plots

(bokeh)

CSV Files

Data

Warehouse

Utility Partners

Dask.distributed

Workers
Dask.distributed

Workers
Dask.distributed

Workers
Dask.distributed

Workers
Dask.distributed

Workers

Dask.distributed

Workers
Dask.distributed

Workers
Dask.distributed

Workers
Dask.distributed

Workers
Dask.distributed

Workers

GET

/observations

MySQL

GET /wrf

NetCDF4

Files

GET

/forecasts
POST

 /forecasts

HDF5 Files

REST Data API

(Flask)

nabu is a tool designed to process data in parallel on

distributed machines using Python. It will be used to generate

operational solar and wind power forecast for electric utility

companies in the Southwest US. These forecasts cover five

minutes to seven days in the future requiring a blending of

short-term, statistical forecasts with long-term, NWP forecasts,

and forecasts will be regenerated every five minutes. The

current forecast system relies on a large, monolithic python

program that consumes 10 GB of memory and may take five

minutes to produce forecasts (and plots). nabu will consume a

fraction of the memory and wall time while also being easier to

develop and debug.

Simplified Example Goals

• Written in a functional style to improve reproducibility and make the program easier to understand

• Uses Dask.distributed which generates an optimized execution graph that can be executed on workers

on many different machines with minimal modification to a serial code

• Utilizes Dask graphs to store provenance information for how a given forecast was generated

• Relies on a REST data API that enables access to raw data from nearly any host (an NFS server/mount

would also work)

• Generate blended power forecasts

for ~50 solar and wind power

plants along with aggregates for

forecasts horizons from 5 minutes

to 7 days

• Update forecasts every 5 minutes

• Leverage multi-core CPUs and a

GPU to produce forecasts quickly

• Make the forecast generation code

easy to understand, extend, and

debug

• Make the forecast generation chain

reproducible

Helpful Tips

• Make sure NetCDF4/HDF5 files are chunked in the shape that best fits your

access pattern. In our case, compression and re-chunking reduced the time

it takes to retrieve a point forecast from a WRF NetCDF from almost a

minute to tens of milliseconds

• The msgpack format with blosc compression is a fast serialization type for

many python objects

Sponsors and Partners

from dask import delayed

from distributed import Client

import requests

import pandas as pd

from pvlib.modelchain import ModelChain

from pvlib.pvsystem import retrieve_sam

from pvlib.tracking import SingleAxisTracker

from pvlib.location import Location

@delayed

def get_observations(params):

 """Go and get the observation data from the api"""

 return requests.get('http://127.0.0.1/observations',

 params=params)

@delayed

def get_wrf_forecasts(params):

 """Get the WRF forecasts from the api"""

 return requests.get('http://127.0.0.1/wrf',

 params=params)

@delayed

def get_satellite_data(params):

 """Get the satellite image from the api"""

 return requests.get('http://127.0.0.1/sat', params=params)

@delayed

def compute_power_fx(index, irradiance, weather):

 """

 Compute the power output of a single axis tracking

 solar power plant using pvlib and the irradiance

 and weather data

 """

 location = Location(32.1, -110.8, 'MST', 800, 'Tucson')

 module = retrieve_sam('sandiamod')[

 'Canadian_Solar_CS5P_220M___2009_']

 inverter = retrieve_sam('cecinverter')[

 'SMA_America__SC630CP_US_315V__CEC_2012_']

 system = SingleAxisTracker(

 module_parameters=module, inverter_parameters=inverter,

 modules_per_string=15, strings_per_inverter=300)

 mc = ModelChain(system, location)

 mc.run_model(index, irradiance=irradiance, weather=weather)

 return mc.ac

@delayed

def compute_persistence(observations, fx_index):

 """Compute a persistence forecast from the observations"""

 return pd.Series(observations.iloc[-1], index=fx_index)

@delayed

def compute_satellite_fx(sat_obs):

 """

 Compute a forecast given the latest satellite image.

 Parts of this rely heavily on linear algebra that

 can be done in 1/10 the time on a GPU if available.

 """

 return lots_of_matrix_manipulation()

@delayed

def make_the_combined_forecast(wrf_fx, sat_fx, persistence_fx):

 """

 Combine the forecasts that have different optimal forecast

 horizons in a smart way.

 """

 return some_clever_combination()

@delayed

def save(combined_fx):

 """

 Post the optimally combined forecast to the central API

 for storage and dissemination

 """

 requests.post('http://127.0.0.1/forecast',

 data={'forecast': combined_fx})

Put it everything together, no processing or data collection

occurs yet

obs = get_observations({'id': 100})

wrf_fx = get_wrf_forecasts({'model': 'UAGFS'})

sat_obs = get_satellite_data({'satellite': 'GOES-W'})

persistence_fx = compute_persistence(obs, wrf_fx.index)

wrf_power_fx = compute_power_fx(wrf_fx.index,

 wrf_fx.irradiance,

 wrf_fx.weather)

sat_fx = compute_satellite_fx(sat_obs)

sat_power_fx = compute_power_fx(wrf_fx.index,

 sat_fx.irradiance,

 wrf_fx.weather)

combined_fx = make_the_combined_forecast(wrf_power_fx,

 sat_power_fx,

 persistence_fx)

final = save(combined_fx)

Now go ahead and run everything on our already setup

dask.distributed workers and scheduler

First connect to the scheduler that's already running

dask_client = Client('127.0.0.1:8686')

Now go ahead and compute while making sure that the

satellite forecast is computed by a worker with

access to a GPU

dask_client.compute(final, workers={(sat_fx): 'GPU Worker'})

A simplified example of how

nabu processes data is shown

to the right. We define functions

that get the data from the REST

API, compute a solar power

forecast from irradiance and

weather data, compute a

persistence forecast, compute a

satellite image forecast, and

combine the forecasts together

then save the result. Each

function is called in the blue
box, but the @delayed ensu-

res no computation is performed
until the client.compute

command. This command gen-

erates the computation graph

shown below and sends it to the

Dask.distributed scheduler. The

scheduler assigns the tasks

(nodes on the graph) to other

worker processes intelligently to

reduce data transfers between

workers. We also specify that a

worker with access to a GPU

should be assigned the task to

generate satellite forecasts.

https://forecasting.energy.arizona.edu

