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Introduction Latent and Sensible Heat Fluxes around Extratropical Cyclones

Extratropical Cyclones (ETCs) play a vital role in Earth’s general climate as they transport 11/21 1200 UTC 11/22 1200 UTC 11/23 1200 UTC 11/24 0600 UTC Large latent and sensible heat fluxes observed
moisture and energy from the tropical regions poleward, as well as providing a majority ot the A B e et
precipitation observed in the midlatitudes.

immediately off the coast on 21-22 November
* Corresponding to large air-sea differences 1in

While we have a well-defined understanding of E'TCs at the synoptic scale, there is still much to temperature and humidity, along with an increase in

learn at the mesoscale, especially surface processes for marine based ETCs. Recent work has

surface winds

)]

highlichted a case study of a marine ETC that exhibited a stratiform-to-convective transition
within its warm front (Crespo & Posselt 2016 (hereinatter CP16) | Fig. 1).
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* Values decreased significantly as cyclone center

moved poleward on 23 November

Latent Heat Flux [W m™]

Fig. 1: CloudSat Radar Reflectivity (dBZe |
colored contours) and Equivalent Potential
Temperature (K | lined contours) from ECMWE-
AUX at 22 November 2006 around 1800 UTC
(top) and 24 November 2006 around 0600 UTC
(bottom).

Source: Crespo & Posselt 2016

Increase 1n surface latent and sensible heat fluxes
on 23 November around 40°N, 60°W
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increase 1n surface fluxes
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It was hypothesized that surface processes and surface heat fluxes led to the observed e Same area where the warm front was observed on

24 November (Fig. 1)

o o o B A e D [ @ Possible increase in instability shortly before warm

I%. 3: Latent (top) & sensible (bottom) surface heat fluxes [W m] from 21-24 November estimated by MERRA-2. X marks the approximate front passage
While CYGNSS’s core mission is to better observe and estimate sutrface winds within tropical location of the cyclone center The black line represents the approximate location of the CloudSat observation shown in bottom of Fig. 1.

cyclones, it will have the ability to observe ETCs developing over the oceans in the lower mid- : :
latitudes. We aim to show that CYGNSS will not only be able to observe ETCs frequently in CYGNSS Sampllng of Extr atl'Oplcal Cyclones
the lower midlatitudes, but also provide data that is currently not available for ETC analysis. ' o e 200 km of low . \ o s ) Warm front transects
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stratiform-to-convective transition seen in Fig. 1. This has motivated our current work and how
we could better observe these surface processes with the recently launched CYGNSS satellite
constellation.
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e CYGNSS simulated specular points cover large portions ™~ = IS o
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e FEnd-to-End Simulator (_EZES) for 6—day CP16 case Study . A= . ObS@I‘V&UOﬂ frequency maximum 35 40 Fig. 4: QuikSCAT surface winds [m 90 135 180 -13 2 i ig. 6: (solid) and

. . . ¢ e . s1] at 2100 UTC on 22 (top) and 23 Fig. 5: Frequency of number of simulated specular points CYGNSS (dashed) mean wind (top),
° Spacecraft Orbital Charactetization Kit <SPOCI<> for 1- Fig. 2: [llustration of automated cold (blue) and CYGNSS I eallstlcally Samp ICS WlndS and sur face (bottom) Nov. 2006, overlaid with within 500 km of a cyclone center (top), and within 25 km and latent (middle) and sensible

year orbits warm (red) front detection. ﬂUXCS ACIrOSS fl’Ol’ltS (Fig. 6) simulated CYGNSS otbits +3 hours of a cold front (middle) and warm front (bottom) expected (bottom) heat fluxes for 2014 (blue),
Latent Heat Flux (LHF) = LpCprU(qs — q4) for respective days and times. within a year of CYGNSS orbit. 2015 (red), and both (black).

Sensible Heat Fl SHF) = CogU(T, — T
enstble Heat Flux (SHF) = cppCpnU(Ts = Ta) CYGNSS Surface Flux Algorithm and Product Conclusions
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forming in the lower midlatitudes in both hemispheres.
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