

THE INFLUENCE OF MICROPHYSICS PARAMETERIZATIONS ON FORECASTS OF DOWNSTREAM WAVINESS

Jessica R. Taheri Jonathan E. Martin University of Wisconsin - Madison

Motivation

Diabatic processes affect Rossby wave structure

Motivation

- Diabatic processes affect Rossby wave structure
- Affects on mesoscale weather and synoptic pattern

Motivation

- Diabatic processes affect Rossby wave structure
- Affects on mesoscale weather and synoptic pattern
- Model microphysics packages affect forecasts

Research Question

 Does the complexity of a microphysics package in a model significantly alter the waviness forecast?

Research Question

- Does the complexity of a microphysics package in a model significantly alter the waviness forecast?
 - Run the WRF using 3 different microphysics packages

Research Question

- Does the complexity of a microphysics package in a model significantly alter the waviness forecast?
 - Run the WRF using 3 different microphysics packages
 - Calculate the sinuosity of each packages 200 hPa height forecast

Methods: The WRF

- Specifics:
 - Version 3.8 of the WRF
 - 80 x 80 km resolution
 - Initialized at 0000 UTC, out 120 hours
 - Runs 3 times, one for each MP package

Methods: The WRF

Kessler Scheme

- Warm rain
- No ice

Source: http://www2.mmm.ucar.edu/wrf/users/workshops/WS2010/presentations/Lectures/Microphysics10.pdf

Methods: The WRF

Kessler Scheme

- Warm rain
- No ice

3-Class Package

Ice processes below O°C

Source: http://www2.mmm.ucar.edu/wrf/users/workshops/WS2010/presentations/Lectures/Microphysics10.pdf

 $Q_i/Q_s/$

Qg

Methods: The WRF

Kessler Scheme

- Warm rain
- No ice

3-Class Package

Ice processes below O°C Ferrier Scheme

Water, rain, ice, super-cooled liquid and ice melt

Methods: Sinuosity

Ganges River, India

Source: Jon Martin, Cyclone Workshop 2015 Presentation

Methods: Sinuosity

Ganges River, India

Methods: Sinuosity

Daily Average 500 hPa Φ (60 m) January 18, 2014

Source: Jon Martin, Cyclone Workshop 2015 Presentation

Methods: Sinuosity

Source: Jon Martin, Cyclone Workshop 2015 Presentation

January 18, 2014

Methods: Sinuosity

Source: Jon Martin, Cyclone Workshop 2015 Presentation

January 18, 2014

Methods: Sinuosity

Source: Jon Martin, Cyclone Workshop 2015 Presentation

Methods: Sinuosity

SIN = actual length equivalent latitude

SIN = 1.2719

Daily Average 500 hPa Φ (552 dm) January 18, 2014

Source: Jon Martin, Cyclone Workshop 2015 Presentation

Heavy rainfall event in California

• 7-9 January 2017

Source: NWS Los Angeles/Oxnard Facebook Page

- Heavy rainfall event in California
 - 7-9 January 2017
- Atmospheric River
 - Landfall 1200 UTC on 7 Jan
 - Exited 1200 UTC on 9 Jan

Source: NWS Los Angeles/Oxnard Facebook Page

- Heavy rainfall event in California
 - 7-9 January 2017
- Atmospheric River
 - Landfall 1200 UTC on 7 JanExited 1200 UTC on 9 Jan

Source: NWS Los Angeles/Oxnard Facebook Page

- WRF initialized at 0000 UTC on 5 Jan
 - River event during mid-range forecast, 48-96 hours

Precipitable Water (mm) for 3 MP Package

24 hr forecast

Precipitable water (mm) for 3 MP Packa

120 hr forecast

Heights 11250m-12150m by 180m

Conclusions and Future Work

 Regional waviness appears sensitive to microphysics packages

Conclusions and Future Work

- Regional waviness appears sensitive to microphysics packages
- Expand to the entire Northern Hemisphere

Conclusions and Future Work

- Regional waviness appears sensitive to microphysics packages
- Expand to the entire Northern Hemisphere
- Which phenomena have the largest downstream impacts on the waviness differences?
 - Atmospheric Rivers
 - Strong cyclogenesis
 - Warm Conveyor Belts

Conclusions and Future Work

- Regional waviness appears sensitive to microphysics packages
- Expand to the entire Northern Hemisphere
- Which phenomena have the largest downstream impacts on the waviness differences?
 - Atmospheric Rivers
 - Strong cyclogenesis
 - Warm Conveyor Belts
- Begin looking at specific cases

Acknowledgements

- Dr. Jonathan Martin, Advisor
- Dr. Michael Morgan
- Martin and Morgan research groups

This research is support by NSF grant no. AGS-1443325

UNIVERSITY OF WISCONSIN

Thank you!

11790m

Cumulus Scheme 1

- Kain-Fritsch (KF)
 - Includes shallow convection
 - Low-level vertical motion in trigger function
 - CAPE removal time scale closure
 - Mass flux type with updrafts and downdrafts, entrainment and detrainment
 - Includes cloud, rain , ice and snow detrainment
 - Clouds persist over convective time scale
 - Used in MM5 and Eta/NAM ensemble
- Comparing all the packages, KF seems to be a good middle ground: 12 hour forecast above comparing

Effects of changing MP

Direct Interactions of Parameterizations

Source: http://www2.mmm.ucar.edu/wrf/users/workshops/WS2010/presentations/Lectures/Microphysics10.pdf

- Floodingevent in California
- January 7-9, 2017

Week	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current 2017-01-10	34.62	65.38	58.22	49.22	27.80	2.13
Last Week 2017-01-03	18.07	81.93	67.61	54.02	38.17	18.31

Boundaries for Sinuosity

