Physical basis of cloud particle size distribution form
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. — Table. 1 Commonly used PSD forms
Introduction y A Tale of Two Approaches
_ Exponential n(D) = Nge P -

=Several analytical forms of particle size distributions (PSDs) Camma (D) = NyDteAD _ /O N(D)dD = Nr

are used in model parameterizations and remote sensing i ME) =0 Common Assumptions: ) . N(D)=Crexp(—A=DP)

retrievals, but which one is most appropriate to use? Generalized gamma n(D) = NoDFe A P” 1 M=a Db / aDPN(D)dD = TWC Different

. __ Np In?(D/D,) | ! results
o _ Lognormal n(D) = exp(— —42) _

*Principle of maximum entropy (MaxEnt) states that for a | V2rinoD 1 /\;{j‘ a 2.Number Concentration (N+) _ N(M) = C (—AuM) from the
group of probability density functions (PDFs) that satisfy Weibull n(D) = NoD"" e~ 3T / N(M)dM = Nr — W22 same

. . . . .Total Water Content (TWC) 0 BN OR :
given properties of a variable, the PDF with the largest _ assumptions
information entropy for such a variable should be chosen. It predicts the most probable distribution for a system /O MN(M)dM =TWC N(D) = C3Dﬁ—lexp(_,13pﬁ)
without regard to the detailed microphysical processes.
Conceptual model Mathematical Solutions:

For many numerical model parameterization and remote sensing retrievals, only bulk properties (macrostates) are Using the method of Lagrangian multipliers:

knowq. How do we infer the microsta’fe (particle sizc? distribqtioqs, gtc.) based on the macrostate information? I = _/ p(D) lnp(D)dD+/ p(D)In Po(D)dD—Ao[/ p(D)dD—1] )\1[/ D)dD—IWC/Ny]
What is the most probable PSD function if no other information is given? 0 0 0

The general result can be solved to be in the form:

Background: Why maximize entropy?
1). For a typical cIoEd “%nlt” qf 100 mx 100 m x 10 m, p(D) = 1 Py(D)exp(—Ag — \ym(D)) Suppose that there are N cloud
there are around N=107"particles. Z(/\Oa /\1) particles in a cloud unit. The mass
2). The macrostate of the cloud system is defined using and size of an individual particle is
bulk properties: total number concentration (N;), total where Z (g, \1) fooo e~ P, o(D)e —Am(D) gD is the normalization factor. the result of many microphysical
water content (TWC), extinction, radar reflectivity (Z), etc. By using m-D relation (m = a Db) the above solution can be reorganized processes. For an jndividua_l
3). The microstate of the cloud system: the sizes, mass, “E“" St - to the more conventional form: partlgle, aSSL.mE)eI that |Its masst;]s a
area, terminal velocity of each individual particles o NT 100/L 6] random variauie, as ong as e
TWC of the system is limited. Then

n(D) = p(D)Np = NoD¥exp(—AD"), there are Q ways that TWC can be

distributed over N particles for any

QUGStlons: 100 m v Dlameter m
As'suming‘;mNT and TWC are known as in most models, with A ‘* where No = Npe=/Z(X\o, A1), A = Ara, and v = b. o D M e ooy

Nr = / N(D)dD and Ir'wi = / m(D)N(D)dD  Fig. 1 Schematic of maximum entropy model Here P,(D) is provided in the form ~D* because of prior assumption of total equals maximizing Q!
Jo Jo

ignorance of number/area/mass/etc. over size, i.e. a uniform distribution.
The paradox of using old entropy definition is due to the underlying assumptions

where N(D) is the number distribution function, and m(D) is the mass-dimensional relations (usually power law),
what is the most probable N(D), or probability density function (PDF, normalized form: p(D)=N(D)/N-)?

Principle of maximum (relative) entropy (MaxEnt): Table. 2 MaxEnt examples Conclusions
Uusli

MaxEnt proposed by Jaynes (1957, 1968) is used widely Constraints Most probable distribution
Mean ( E(x)=p ) exponential distribution 1). Principle of maximum (relative) entropy is proposed to derive the analytical form of cloud PSD;

In fields such as image processing, economics, ecology,
Mean and variance normal distribution 2). Generalized gamma distributions are derived when TWC and N; are known, and the prior information is given in the form of D¥;

mechanical engineering. MaxEnt states that entropy can ( E(x)=p and E[(x-p)2]=02)

be used as a criterion to choose a PDF.
References

Jaynes, E. T., 1957: Information theory and statistical mechanics. Physical review, 106 (4), 620.

oo
arg max Entropy: H = — / p(D)In For entropy of continuous distribution,
0

D rior information P,(x) is crucial.
p(D) o Oth .p diff t it O( ) be derived f Jaynes, E. T., 1968: Prior probabilities. Systems Science and Cybernetics, IEEE Transactions on, 4 (3), 227-241.
hiect t DVdD = 1 erwise, diterent resulls Can_ € derived from Liu, Y., Y. Laiguang, Y. Weinong, and L. Feng, 1995: On the size distribution of cloud droplets. Atmospheric research, 35 (2), 201-216.
SUbject 1o 0 p(D) — the same assumptions. Shannon, Claude Elwood. "A mathematical theory of communication." ACM SIGMOBILE Mobile Computing and ommunications

Read a tale of two approaches Review 5.1 (2001): 3-55.
Zhang, X., and G. Zheng, 1994: A simple droplet spectrum derived from entropy theory. Atmospheric research, 32 (1), 189-193.

This can be solved by the method of Lagrangian multipliers: Acknow|edgments jl[

o0 00 00 The work was supported by the office of Biological and Environmental Research (BER) of 1867
= —/ p(D) lnp(D)dD+/ p(D)1In Py(D)dD—\g [/ p(D)dD—1] )\1[/ D)dD—IWC/Nr] The U.S. Department of Energy DE-SC0001279 and DE-SC0008500) and by the National
0 0 0 Science Foundation (AGS12-13311). Data were obtained from the ARM archive, sponsored I L L I N O I S
by the US DOE Office of Science, BER, Climate and Environmental Sciences Division. UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN




