NACIONAL

DE COLOMBIA

mountains of tropical South America

UNIVERSIDAD Diurnal cycle of extreme convective elements in the Andes \éIATA
“1

Department of Geosciences and Environment,
Universidad Nacional de Colombia, at Medellin

Introduction

Manuel D. Zuluaga, Carlos D. Hoyos and Sebastian Gomez

Robert A. Houze, Jr. Symposium, 97th AMS Annual Meeting, Seattle, WA 22-27 January, 2017

Diurnal cycle of reflectivity and rain rate

www.siata.gov.co

Con el apoyo de: Un proyecto de:

€PN’ «§ISAGEN

* The tropical region of South America is unique in
weather related importance since it is a place where
the ITCZ intersects elevated topography

* The relative warm waters of the Pacific ocean favors
the region into obtain a climatological maximum in
precipitation [1], and to have a large concentration of
MCSs [2, 3] producing convective storms exhibiting a
different variety of forms

* In this study we employ data from TRMM satellite and

from a ground radar to identify and analyze the | :f.'.,"" . ,-..
diurnal cycle of the different forms of extreme ' BOW  T6W
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e UW interpolated TRMM-PR database (Houze et al. 2015) and LIS data version 7 for 1998-2013

» Reflectivity fields from a dual polarization, doppler C-Band radar located in the city of Medellin (CMED,
Fig. 1), and operated by the Sistema de Alerta Temprana del Valle de Aburrd (SIATA). (2013-2016)
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* Operationally, the CMED radar scans the volume alternating between surveillance (SUR, 0.5°, 1.0°, 2.0° and 4.0°
elevations up to 120 km) about every 5 min, and elevation angle scans (RHI) in 4 fixed azimuths (N, S, E, W)

* The only polarimetric radar that has been capturing fine vertical resolution scans (RHIs) for almost 4 years!!!

« CMED data was interpolated to cartesian grid using NCAR-RadX routines.

» A Convective/Stratiform separation algorithm [4] was applied to CMED reflectivity at 3 km, and data
was visually inspected and compared to match TRMM overpasses when available

CMED and TRMM annual climatology

CMED reflectivity (2013-2016)
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* Maxima of rainfall associated to orographic enhancement in regions of high
moisture and instability. In some areas, reflectivity values comparable to maxima in
the Pacific coast

* Annual climatology of reflectivity shows very similar patterns, specially for those
regions with intense rainfall

e Diurnal cycle of accumulated reflectivity at 3 km in < 20T 0.6
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* Sequence possible associated with the translation [ i T (G 3

from deep convective to stratiform rain 00 02 04 06 08 10 12 14 16 18 20 22
hours (MST)

Longitudinal diurnal evolution

CMED reflectivity (2013-2016)  Time-longitude diagrams representing the
diurnal progression of the CMED reflectivity,
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Extreme category identification

e Use the advantage of CMED scanning strategy to combine methods to identify stratiform and
convective events developing extreme characteristics of intensity, height and size, similar to [5]

* Horizontal method
 Wide Convective Cores
e Refl >40dBz
e Area> 100 km?
* Broad Stratiform Regions
e Area> 5000 km?2

CMED reflectivity at 3 km Identified category
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e Vertical method
* Deep Convective Core
e Refl >40dBzZ
e Zdim>8km
* Wide Convective Cores
e Refl >40dBZ
e Xdim>8km
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* Frequency of Deep Convective Cores (red) ) Northern Colombia A
maximizing in the afternoon, Wide Convective : |
Cores (green) in at midnight, and Broad
Stratiform Regions (blue) after midnight

« Sequence associated with the life cycle of o /—

convective events 00 02 04 06 08 10 12 14 16 18 20 22
Hours (MST)

Diurnal cycle of the frequency of occurrence of DCC (red),
WCC (green), and BSR (blue) using TRMM radar reflectivity
data (adapted from Zuluaga and Houze 2015)
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e Similar results using TRMM based convective
categories as in [3]

Longitudinal and latitudinal location of DCC occurrence
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* This study uses de advantage of two different radars to analyze the distribution of
extreme convective elements that occur in a mountainous region of the tropics

e Rainfall distribution during the day show a maximum peak at midnight and a
secondary peak in the afternoon, related to the type of convective elements and the
location with respect to the radar

* Sequence of extreme convective elements changing from intense and deep
convective cells, to horizontally wide convective elements, and then to mature and
broad stratiform regions

 These stages are analogous to the life-cycle of an individual MCS and represent the
changes in the convective cloud population relative to the maximum of rain
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