

PRINCETON PRINCETON UNIVERSITY

How Much Do Tropical Cyclones Grow in Size During Extratropical Transition?

I. Introduction

Motivation

- Approximately half of North Atlantic (NA; Hart and Evans 2001) and western North Pacific (WNP; Kitabatake 2011) tropical cyclones (TCs) undergo extratropical transition;
- Prior work has suggested that NA outer region TC size increases by, on average, ~20% during extratropical transition (Hart et al. 2006);
- Greater understanding of outer region TC size during extratropical transition is important in assessing TC structure changes and their hazards and risks.

Objective

Determine whether outer region TC size grows larger during extratropical transition for NA and WNP TCs using reanalysisderived TC size dataset.

2. Methodology

Datasets

- NA and WNP TCs (max 10-m wind \geq 34 kt) over ocean during 1979– 2010 in IBTrACS (Knapp et al. 2010) are examined;
- TC wind field is obtained from 6-h 0.5° NCEP CFSR (Saha et al. 2010).

Extratropical Transition Definition

- Extratropical transition in NCEP CFSR defined using cyclone phase space (Hart 2003):
 - Warm Core Prior to Extratropical Transition Start: Lowertropospheric warm core $(-V_T^L > 0)$ for 48 hours prior to extratropical transition or from TC genesis to extratropical transition (whichever is shortest)
- 2. Extratropical Transition Start: Lower-tropospheric thermal structure of TC becomes asymmetric (B >10) and lowertropospheric TC structure remains warm core $(-V_T^L > 0)$;
- Extratropical Transition End: Lower-tropospheric thermal structure of TC remains asymmetric (B >10) and lowertropospheric TC structure becomes cold core $(-V_T^L < 0)$.

Outer Region TC Size Definition

- Outer region TC size metric: Radius of 8 m s⁻¹ azimuthal-mean 10m azimuthal wind (r_8) ;
- Reanalysis r₈ defined according to Chavas and Vigh (2014):
 - 1. TC-centered grid constructed for 10-m wind vectors masking out grid points over land;
 - 2. Remove environmental wind from TC-centered wind vectors following Lin and Chavas (2012);
 - . Compute azimuthal wind field and calculate its azimuthal-mean;
 - 4. Interpolate azimuthal-mean azimuthal wind profile to 0.5 times reanalysis grid spacing masking out radii with insufficient data;
 - 5. Extract r_8 from radial profile of azimuthal-mean azimuthal wind;
- Only TCs with continuously defined r_8 before and during extratropical transition in NA (N=39; 36% of ET cases in CFSR) and WNP (N=60; 46% of ET cases in CFSR) are analyzed.

	3.	Res
An	alysis d	of trac
1.	Extratr	opical
2.	Latitud TCs (F	e of st ig. 1a)
		Nort
$50^{\circ}N$	a) ° ★ ET ★ ET	Start End
$30^{\circ}N$		
$10^{\circ}N$		
90	°W	70°W
Fig stu	g. 1: Tra Idy. The	ick and media
4	. Re	sults

	Examiı extratr	nation opical tr
Density	0.004	a)
	0.003 -	
	0.002 -	
	0.001	
	0.000	
Density	0.004	b)
	0.003	
	0.002	
	0.001	
	0.000	
	Fig. 2:	Box-and-

1: Princeton University, 2: Purdue University, 3: University at Albany, SUNY

s: Evolution of r₈ Before and During Extratropical Transition

Synopsis

Overview

-whiskers and kernel density estimates of r₈ (km) at day 2 prior to extratropical transition, day 1 prior to extratropical transition, and during day of extratropical transition for (a) NA and (b) WNP TCs.

Ben Schenkel¹ (benschenkel@gmail.com), Ning Lin¹, Dan Chavas², Michael Oppenheimer¹, and Alan Brammer³

Fig. 3: Joint histograms (shaded hexagons) of r₈ prior to extratropical transition start (km) versus maximum r₈ during extratropical transition (km) for (a) NA and (b) WNP TCs. The dots indicate individual cases shaded according to time of maximum r₈ relative to extratropical transition start (days). The solid blue line indicates the line of no change in r_8 , whereas the dashed lines indicate $\pm 25\%$ change in r_8 .

6. Results: Comparison of r₈ for Poleward-Moving ET and No

Overview

Compare r₈ distributions for poleward-moving extratropically transitioning TCs and nonextratropically transitioning TCs to quantify importance of extratropical transition process versus changes in TC latitude.

Synopsis

- 1. 70% of non-extratropically transitioning NA TCs grow in size as they move poleward (Fig. 5a);
- Growth in r₈ for nonextratropically transition TCs is relatively small compared to extratropically transitioning TCs (Fig. 5a);
- Both WNP extratropically and non-extratropically transitioning TCs show little change in r_8 as TCs move polewards (Fig. 5b).

Fig. 5: As in Fig. 2, but for poleward-moving extratropically transitioning TCs equatorward and polewards of 25N.

AMS Poster: 980

Fig. 4: Joint histograms (shaded hexagons) of rate of change in r₈ 1–2 days prior to extratropical transition (km) versus rate of change in r₈ during extratropical transition (km) for (a) NA and (b) WNP TCs. The dots indicate individual cases shaded according to time of maximum r₈ relative to extratropical transition start (days). The solid blue lines demarcate no change in r_8 for each respective variable.

on-ET TCs	7. Summary and Discussion	
T Lat≤25N (N=27 TCs) on-ET Lat≤25N (N=43 TCs) on-ET Lat>25N (N=43 TCs) on-ET Lat>25N (N=43 TCs)	 Majority of NA TCs increase in size before and during extratropical transition (Figs. 2a, 3a); Most NA TCs grow in size more quickly during extratropical transition than before ET (Fig. 4a); Majority of NA TCs grow in size between 5—30 km (6 h)⁻¹ during extratropical transition (Fig. 4a); Most WNP TCs decrease in size during extratropical transition (Figs. 2b–4b) potentially due to WNP TCs initially being larger in size prior to extratropical transition; Extratropical transition process more important than latitude change in growth of TC size for NA TCs (Fig. 5a). 	
$T Lat \leq 25N (N=49 TCs)$ on-ET Lat $\leq 25N (N=140 TCs)$ T Lat $\geq 25N (N=49 TCs)$	8. Acknowledgments and References	
$\frac{1}{2} \frac{1}{2} \frac{1}$	This research is sponsored by NSF Grant EAR-1520683. We would like to thank Bob Hart for insightful discussions.	
1000 1200	Chavas, D., and J. Vigh, 2014: QSCAT-R: QuikSCAT Tropical cyclone radial structure dataset. NCAR Tech. Note, TN-5131STR, 22 pp. Hart, R. and J. Evans, 2001: A Climatology of the ET of Atlantic TCs. <i>J. Climate</i> , 14 , 546–564. Hart, R., 2003: A CPS Derived from Thermal Wind and Thermal Asymmetry. <i>Mon. Wea. Rev.</i> , 131 , 585–616.	
	Hart, R., J. Evans, and C. Evans, 2006: Synoptic Composites of the ET Life Cycle of NA TCs: Factors Determining Posttransition Evolution. <i>MWR</i> , 134 , 553–578. Lin, N., and D. Chavas, 2012: On hurricane parametric wind and applications in storm surge 673 modeling. J. Geophys. Res., 117 (D9)	
and non-extratropically	 Kitabatake, Naoko, 2011: Climatology of ET of TCs in the WNP defined by using CPS. <i>J. Meteor. Japan,</i> 89, 309–325. Knapp, K. R. and Coauthors, 2010: The Internat. BT Archive for Climate Stewardship (IBTrACS) unifying TC data. <i>BAMS</i>, 91, 363–376. Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057. 	