Sea Level Pressure Extrapolation Experiment Alex DesRosiers Presenting: Other Authors: Ian Sears, Paul Flaherty, Jack Parrish, Richard Henning, Michael Holmes, Jess Williams, And Brian Belson

Objectives

- Introduce Equation
- Describe Methodology
- Present Analysis/Results
- Conclusion
- Further Research

Question

- Can the current AOC Extrapolated Sea Level Pressure Equation be improved upon by adjusting lapse rate?
- A Sea Level Pressure reading produces a rounded pressure to the mb and the equation should replicate it
- Why does this matter?

000 URNT12 KWBC 022244 VORTEX DATA MESSAGE AL052016 A. 02/22:20:23Z B. 16 deg 17 min N 081 deg 45 min W C. 700 mb 3075 m D. 47 kt E. 116 deg 28 nm F. 198 deg 44 kt G. 116 deg 28 nm H. EXTRAP 997 mb J. 16 C / 3055 m K. 7 C / NA L. NA M. NA N. 12345 / 7 0.1/1nm NOAA3 WA05A EARL OB 14 EXTRAP FROM 10000FT CURVED BANDING EAST AND NORTH OCCASIONAL LIGHTNING MAX OUTBOUND FL WIND AND MAX FL WIND 47 KT 276 / 3 NM 22:21:05Z

Hurricane Lapse Rate

- The lapse rate is a change in temperature with altitude
- The Standard Lapse rate is -6.5°C per km
- A hurricane is non standard due to subsidence and latent heat release make for warm air temps in eye
- A possible hurricane Lapse Rate is -2.5°C per km

The AOC Equation for Extrapolated Sea Level Pressure

• 7 instances of Standard Lapse Rate

Deriving a New Lapse Rate

- Needed a lapse rate unique to each storm
- Simple calculation to produce it on the fly
- Unique Lapse Rate = $\frac{(T_{surface} Tf_{lightlevel})}{GA}$
- Substitute into equation at all points where lapse rate is used and see how it changes the extrapolated SLP

Generating Cases

- Needed Center Drops where SLP is ground truth
- Had to pull them from NHC reconnaissance archive
- Generated 104 total cases using Python, SQL, and Excel
- Cases come from 2014-2016 reconnaissance

Vortex Data Message (VDM)

000 URNT12 KWBC 171452 VORTEX DATA MESSAGE AL082014 A. 17/14:23:40Z B. 30 deg 09 min N 066 deg 15 min W C. NA D. 84 kt E. 320 deg 11 nm F. 054 deg 81 kt G. 323 deg 14 nm H. 948 mb C / 2032 m J. 17 C / 2759 m K. 16 C / NA L. OPEN S M. C30 N. 12345 / 7 0.1/3 nm P. NOAA3 1108A GONZALO OB 17 MAX FL WIND 121 KT 039 / 23 NM 11:41:49Z PENETRATION AT 8000 FT RADAR ALT POOR RADAR PRESENTATION OF INNER EYEWALL MULTIPLE OUTER BANDS NW SEMICIRCLE CNTR DROPSONDE SFC WIND 140 / 10 KTS

Temp Drop Message

300									
UZNT13 KWBC 171434									
XXAA 67148 99302 70662 11506 99948 <mark> 258</mark> 07 14010 00/// ///// ////	/								
92215 25207 18013 85959 22012 16509 88999 77999									
31313 09608 81424									
51515_10190_70636									
51616 NOAA3 1108A GONZALO OB 15									
52626 EYE MBL WND 17510 AEV 07751 DLM WND 18508 947723 WL150 150	1								
0 084 REL 3016N06624W 142401 SPG 3017N06624W 142759 =									
XXBB 67148 99302 70662 11506 00948 25807 11850 22012 22744 1762	9								
33723 16603									
21212 00948 14010 11926 17513 22890 19507 33868 16510 44850 1650	9								
55834 15510 66820 18511 77723 27511									
31313 09608 81424									
51515 10190 70636									
51616 NOAA3 1108A GONZALO OB 15									
52626 EYE MBL WND 17510 AEV 07751 DLM WND 18508 947723 WL150 150	1								
0 084 REL 3016N06624W 142401 SPG 3017N06624W 142759 =									

High Density Observation (HDOB)

	000												
	URNT15	KWBC 1	171432										
	NOAA3 1	1108A (50NZALO			HDOB	35 20	014101	L7				
	142300	3011N	06618W	7231	02369	9477	+157	1111	034015	017	034	004	05
X.	142330	3009N	06616W	7226	02373	9471	+160	1111	345010	014	026	006	05
X.	142400	3009N	06614W	7229	02369	9464	+167	+165	272010	012	026	003	03
W.	142430	3009N	06612W	7230	02366	9468	+160	1111	223015	016	024	003	05
	142500	3007N	06612W	7226	02372	9467	+162	1111	239015	016	111	111	05
	142530	3006N	06614W	7233	02368	9469	+164	1111	268017	018	028	001	05
	142600	3006N	06616W	7228	02372	9472	+160	1111	299015	016	031	000	01
	142630	3006N	06618W	7228	02372	9476	+159	1111	323018	020	032	002	01
	142700	3006N	06620W	7227	02385	9484	+161	1111	331028	031	034	001	01
	142730	3006N	06623W	7211	02414	9494	+160	1111	326036	039	037	003	01
	142800	3006N	06625W	7268	02355	9496	+174	+152	338048	051	049	002	00
	142830	3006N	06627W	7276	02361	9511	+176	+154	340066	071	064	006	00
	142900	3006N	06629W	7300	02348	9521	+188	+153	345084	087	077	010	00
	142930	3006N	06631W	7320	02350	9555	+180	+141	344092	093	078	012	00
	143000	3006N	06633W	7314	02382	9583	+179	+133	345090	092	070	008	00
	143030	3006N	06635W	7326	02390	9615	+170	+134	344087	087	068	004	00
	143100	3006N	06637W	7341	02398	9661	+148	+135	347084	086	064	005	00
	143130	3006N	06639W	7356	02398	9684	+148	+131	349080	082	062	004	00
	143200	3006N	06641W	7387	02379	9699	+153	+131	347076	078	062	004	00
	143230	3007N	06643W	7402	02376	9718	+152	+133	346071	073	062	007	00

Sample Case: Hurricane Gonzalo

StaticPres	GeoAlt	AirTemp	DewPt	SLP	Tsurf	Storm	AirCraft	CenterID
722.9	2369	16.7	16.5	948	25.8	GONZALO	NOAA3	16

First Attempt at Improvement

Hurricane Gonzalo Case Error

Systematically

Over/Underestimating

Standard Lapse Rate Derived Lapse Rate ιO. ۸ Error (mb) 0 V ų. 880 900 920 940 960 980 1000

Extrap Sea Level Pressure Error

Observed Sea Level Pressure from Dropsonde (mb)

Finding the Middle

- Calculate new average lapse rate
- New Lapse Rate = $\frac{(Unique Lapse Rate+Standard Lapse Rate)}{(Unique Lapse Rate+Standard Lapse Rate)}$
- Plug new Lapse Rate back into equation
- Results brought us closer to ground truth

Extrap Sea Level Pressure Error

Possible Sources of Error

- Dropsonde does not always fall directly through column extrapolation was made from
- Sea Surface Temperatures are higher than the last sonde measured air temperatures
 - The calculated lapse rate does not account for that difference in temperature
 - Averaging it with the standard lapse rate brings it closer to ground truth

Adjusted Lapse Rate

Sea Surface Temperature must be accounted for

Average Lapse Rate Improvement

The Air Force Equation

- The AF equation also creates a unique lapse rate for each storm
 - Slightly different method

Unique Lapse Rate =
$$\frac{(T_{surf} - T_{flightlevel})}{GA}$$

Results

- A smoothed density plot line was added for the resulting errors of all of the equations.
- This allows them to be plotted together showing their differences in <u>accuracy</u> and <u>precision</u>

Air Force Equation Results

Original AOC Equation and Derived Lapse Rate Equation

AOC vs Unique LR Equation Results

Air Force Results

Average Lapse Rate Results

All Methods Compared

Full Comparison Results

Conclusions

- In our 104 case experiment, the Average Lapse Rate calculation outperformed all others
- If additional data show the current equation being less accurate, updating the equation would be valuable

Further Research

- Expanding the data set is important to solidifying these findings
- Creating consistency between the Air Force and NOAA would be challenging but valuable
- Exploring a weighted average technique
- Examine if Air Force or Average Lapse Rate equations out-perform each other at different pressure ranges

Questions

