Sea Level Pressure Extrapolation Experiment

Presenting: Alex DesRosiers
Other Authors: Ian Sears, Paul Flaherty, Jack Parrish, Richard Henning, Michael Holmes, Jess Williams, And Brian Belson
Objectives

- Introduce Equation
- Describe Methodology
- Present Analysis/Results
- Conclusion
- Further Research
Question

- Can the current AOC Extrapolated Sea Level Pressure Equation be improved upon by adjusting lapse rate?
- A Sea Level Pressure reading produces a rounded pressure to the mb and the equation should replicate it.
- Why does this matter?
Hurricane Lapse Rate

- The lapse rate is a change in temperature with altitude.
- The Standard Lapse rate is \(-6.5^\circ C\) per km.
- A hurricane is non standard due to subsidence and latent heat release make for warm air temps in eye.
- A possible hurricane Lapse Rate is \(-2.5^\circ C\) per km.
The AOC Equation for Extrapolated Sea Level Pressure

- \(SLP = 1013.25 \left[1 - \frac{(PA - GA \frac{288.15 - \Gamma_{std} \times PA}{Tv})}{288.15 - \frac{\Gamma_{std}}{\Gamma_{std}}} \right] \frac{g}{\Gamma_{std} \times Rd} \)

- \(PA = \frac{288.15}{\Gamma_{std}} \left[1 - \left(\frac{P_{stat}}{1013.25} \right) \frac{\Gamma_{std} \times Rd}{g} \right] \)

- 7 instances of Standard Lapse Rate
Deriving a New Lapse Rate

- Needed a lapse rate unique to each storm
- Simple calculation to produce it on the fly

Unique Lapse Rate = \(\frac{(T_{surface} - T_{f_{lightlevel}})}{GA} \)

- Substitute into equation at all points where lapse rate is used and see how it changes the extrapolated SLP
Generating Cases

- Needed Center Drops where SLP is ground truth
- Had to pull them from NHC reconnaissance archive
- Generated 104 total cases using Python, SQL, and Excel
- Cases come from 2014-2016 reconnaissance
Vortex Data Message (VDM)

000
URNT12 KWBC 171452
VORTEX DATA MESSAGE AL082014
A. 17/14:23:40Z
B. 30 deg 09 min N 066 deg 15 min W
C. NA
D. 84 kt
E. 320 deg 11 nm
F. 054 deg 81 kt
G. 323 deg 14 nm
H. 948 mb
I. 15 C / 2032 m
J. 17 C / 2759 m
K. 16 C / NA
L. OPEN S
M. C30
N. 12345 / 7
O. 1 / 3 nm
P. NOAA3 1108A GONZALO OB 17
MAX FL WIND 121 KT 039 / 23 NM 11:41:49Z
PENETRATION AT 8000 FT RADAR ALT
POOR RADAR PRESENTATION OF INNER EYEWALL
MULTIPLE OUTER BANDS NW SEMICIRCLE
CNTR DROPSonde SFC WIND 140 / 10 KTS
Temp Drop Message
High Density Observation (HDOB)

<table>
<thead>
<tr>
<th>Time</th>
<th>URNT15</th>
<th>KWBC</th>
<th>171432</th>
<th>NOAA3</th>
<th>1108A GONZALO</th>
<th>HDOB</th>
<th>35</th>
<th>20141017</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>142300</td>
<td>3011N</td>
<td>06618W</td>
<td>7231</td>
<td>02369</td>
<td>9477</td>
<td>+157</td>
<td>034015</td>
</tr>
<tr>
<td></td>
<td>142330</td>
<td>3009N</td>
<td>06616W</td>
<td>7226</td>
<td>02373</td>
<td>9471</td>
<td>+160</td>
<td>345010</td>
</tr>
<tr>
<td>142400</td>
<td>3009N</td>
<td>06614W</td>
<td>7229</td>
<td>02369</td>
<td>9464</td>
<td>+167</td>
<td>+165</td>
<td>272010</td>
</tr>
<tr>
<td></td>
<td>142430</td>
<td>3009N</td>
<td>06612W</td>
<td>7230</td>
<td>02366</td>
<td>9468</td>
<td>+160</td>
<td>223015</td>
</tr>
<tr>
<td></td>
<td>142500</td>
<td>3007N</td>
<td>06612W</td>
<td>7226</td>
<td>02372</td>
<td>9467</td>
<td>+162</td>
<td>239015</td>
</tr>
<tr>
<td></td>
<td>142530</td>
<td>3006N</td>
<td>06614W</td>
<td>7233</td>
<td>02368</td>
<td>9469</td>
<td>+164</td>
<td>268017</td>
</tr>
<tr>
<td></td>
<td>142600</td>
<td>3006N</td>
<td>06616W</td>
<td>7228</td>
<td>02372</td>
<td>9472</td>
<td>+160</td>
<td>299015</td>
</tr>
<tr>
<td></td>
<td>142630</td>
<td>3006N</td>
<td>06618W</td>
<td>7228</td>
<td>02372</td>
<td>9476</td>
<td>+159</td>
<td>323018</td>
</tr>
<tr>
<td></td>
<td>142700</td>
<td>3006N</td>
<td>06620W</td>
<td>7227</td>
<td>02385</td>
<td>9484</td>
<td>+161</td>
<td>331028</td>
</tr>
<tr>
<td></td>
<td>142730</td>
<td>3006N</td>
<td>06623W</td>
<td>7211</td>
<td>02414</td>
<td>9494</td>
<td>+160</td>
<td>326036</td>
</tr>
<tr>
<td></td>
<td>142800</td>
<td>3006N</td>
<td>06625W</td>
<td>7268</td>
<td>02355</td>
<td>9496</td>
<td>+174</td>
<td>338048</td>
</tr>
<tr>
<td></td>
<td>142830</td>
<td>3006N</td>
<td>06627W</td>
<td>7276</td>
<td>02361</td>
<td>9511</td>
<td>+176</td>
<td>340066</td>
</tr>
<tr>
<td></td>
<td>142900</td>
<td>3006N</td>
<td>06629W</td>
<td>7300</td>
<td>02348</td>
<td>9521</td>
<td>+188</td>
<td>345084</td>
</tr>
<tr>
<td></td>
<td>142930</td>
<td>3006N</td>
<td>06631W</td>
<td>7320</td>
<td>02350</td>
<td>9555</td>
<td>+180</td>
<td>344092</td>
</tr>
<tr>
<td></td>
<td>143000</td>
<td>3006N</td>
<td>06633W</td>
<td>7314</td>
<td>02382</td>
<td>9583</td>
<td>+179</td>
<td>345090</td>
</tr>
<tr>
<td></td>
<td>143030</td>
<td>3006N</td>
<td>06635W</td>
<td>7326</td>
<td>02390</td>
<td>9615</td>
<td>+170</td>
<td>344087</td>
</tr>
<tr>
<td></td>
<td>143100</td>
<td>3006N</td>
<td>06637W</td>
<td>7341</td>
<td>02398</td>
<td>9661</td>
<td>+148</td>
<td>347084</td>
</tr>
<tr>
<td></td>
<td>143130</td>
<td>3006N</td>
<td>06639W</td>
<td>7356</td>
<td>02398</td>
<td>9684</td>
<td>+148</td>
<td>349080</td>
</tr>
<tr>
<td></td>
<td>143200</td>
<td>3006N</td>
<td>06641W</td>
<td>7387</td>
<td>02379</td>
<td>9699</td>
<td>+153</td>
<td>347076</td>
</tr>
<tr>
<td></td>
<td>143230</td>
<td>3007N</td>
<td>06643W</td>
<td>7402</td>
<td>02376</td>
<td>9718</td>
<td>+152</td>
<td>346071</td>
</tr>
</tbody>
</table>
Sample Case: Hurricane Gonzalo

<table>
<thead>
<tr>
<th>StaticPres</th>
<th>GeoAlt</th>
<th>AirTemp</th>
<th>DewPt</th>
<th>SLP</th>
<th>Tsurf</th>
<th>Storm</th>
<th>AirCraft</th>
<th>CenterID</th>
</tr>
</thead>
<tbody>
<tr>
<td>722.9</td>
<td>2369</td>
<td>16.7</td>
<td>16.5</td>
<td>948</td>
<td>25.8</td>
<td>GONZALO</td>
<td>NOAA3</td>
<td>16</td>
</tr>
</tbody>
</table>
First Attempt at Improvement
Systematically Over/Underestimating
Finding the Middle

- Calculate new average lapse rate
- New Lapse Rate = \(\frac{(Unique \ Lapse \ Rate + Standard \ Lapse \ Rate)}{2} \)
- Plug new Lapse Rate back into equation
- Results brought us closer to ground truth
Possible Sources of Error

- Dropsonde does not always fall directly through column extrapolation was made from
- Sea Surface Temperatures are higher than the last sonde measured air temperatures
 - The calculated lapse rate does not account for that difference in temperature
 - Averaging it with the standard lapse rate brings it closer to ground truth
Adjusted Lapse Rate

- Sea Surface Temperature must be accounted for
Average Lapse Rate Improvement

![Graph showing Hurricane Gonzalo Case Error]

- AOC Equation
- Unique LR Equation
- Average LR Equation
The Air Force Equation

- The AF equation also creates a unique lapse rate for each storm
- Slightly different method
Results

- A smoothed density plot line was added for the resulting errors of all of the equations.
- This allows them to be plotted together showing their differences in **accuracy** and **precision**.
Original AOC Equation and Derived Lapse Rate Equation
Air Force Results
Average Lapse Rate Results
All Methods Compared
Conclusions

- In our 104 case experiment, the Average Lapse Rate calculation outperformed all others.

- If additional data show the current equation being less accurate, updating the equation would be valuable.
Further Research

- Expanding the data set is important to solidifying these findings

- Creating consistency between the Air Force and NOAA would be challenging but valuable

- Exploring a weighted average technique

- Examine if Air Force or Average Lapse Rate equations outperform each other at different pressure ranges
Questions