



Introduction

During the summer of 2016 at the Mt. Bachelor Observatory (MBO, 2.7 km a.s.l.) we measured fine particulate matter (PM1), carbon monoxide (CO), aerosol light scattering (σ_{scat}), aerosol absorption (σ_{abs}) from a Tricolor Absorption Photometer (TAP), Scanning Mobility Particle Sizer Spectrometer (SMPS) aerosol number size distributions, and Black Carbon with an Aethalometer at 800 nm (AE33) (eBC) and an Single-Particle Soot Photometer (SP2) (rBC). The main scientific questions of this deployment were:

- How do the measurements of Black Carbon from the Aethalometer and SP2 compare?
- What is the range of $\Delta BC/\Delta CO$ enhancement ratios in aged Wildfire Events and how do they compare to other enhancement ratios? - What are the aerosol and rBC size distributions during Wildfire plumes?

Aerosol Size Distributions during Wildfires Comparison of Aethalometer and TAP σ_{abs} **Comparison of Aethalometer BC and SP2 rBC** - AE33 σ_{abs} substantially higher than TAP σ_{abs} - Size distribution was measured for all - AE33 eBC higher than SP2 rBC by a factor of aerosols with the SMPS and rBC particles by at all comparable wavelengths. 1.6 to 2.15 for Wildfire events. - TAP σ_{abs} corrected using the Virkkula et al. the SP2. - This is expected for high OA environment (high (2010) correction scheme. Wildfire AAE values), but also seen during non-wildfire 8000 SMPS: solid line Events 470 (AE33) and 467 (TAP) nm SP2: dashed line influenced air masses. ر س 3000 (C 100 slope = 0.241- AE33 "dual spot" loading corrected (Drinovec $R^2 = 0.960$ (Mm⁻¹) 80 ---- 10 et al. 2015) and multiple scattering corrected 16010/Np 2000 (Weingartner et al. 2003). 60 ab 40 2500 880 1:1 line 80100 200 300 400 600

0/30/10 14.30	0/30/10 19.00	1.02	0.40	0.04	0.43	0.21	0.43	4.55	0.40	0.0470	0.90	13.42	0.91	9.05	0.97	5.05	0.95
8/30/16 19:10	8/31/16 0:35	0.89	0.89	0.03	0.88	0.24	0.91	4.28	0.89	0.0555	0.98	14.32	0.98	8.17	0.98	5.15	0.98
8/31/16 2:45	8/31/16 7:30	1.01	0.96	0.04	0.96	0.29	0.96	4.70	0.95	0.0614	0.97	14.13	0.97	8.17	0.97	5.60	0.97
8/31/16 12:40	8/31/16 15:15	0.46	0.66	0.02	0.57	0.18	0.65	2.69	0.65	0.066	1.00	13.63	0.92	7.83	0.87	5.42	0.80
8/31/16 15:30	9/1/16 0:30	0.81	0.76	0.03	0.74	0.27	0.77	3.65	0.75	0.073	0.98	15.01	0.97	8.43	0.96	5.61	0.97

Conclusions and Future Work

- The Aethalometer over-predicts Black Carbon compared to the SP2 and aerosol absorption coefficients compared to the TAP.
- $\Delta rBC/\Delta CO$ range from 2.69-4.98 ng m⁻³ ppbv⁻¹ during Wildfire Events.
- MAC of BC estimated to be 5.05-6.90 m² g⁻¹ (at 660 nm) for aged Wildfire aerosols.
- $\Delta rBC/\Delta CO$ from Wildfires correlated with SMPS geometric mean diameter (Dpm) as well as event averaged CO, PM1, CO, σ_{abs} , σ_{scat} .
- Investigate relationships between BC and absorption coefficient measurements using various correction schemes for AE33 and TAP.

Acknowledgements:

Funding for research at MBO was supported by the National Science Foundation (grant number: 1447832). The MBO is also supported by a grant from the NOAA Earth System Research Laboratory.