The Polar Amplification Asymmetry: Role of Antarctic Surface Height

Marc Salzmannn January 25, 2017

Polar Amplification Asymmetry

Local temperature change when $\Delta T_{glob} = 2^{\circ}$ C from the CMIP5 RCP8.5 experiment

Seneviratne et al., Nature 529, 477-483 (2016)

Adapted by permission from Macmillan Publishers Itd: Nature_convright 2016

UNIVERSITÄT LEIPZIG

January 25, 2017 1 / 18

Role of antarctic land height

- use Community Earth System Model (CESM) v1.0.6, at low resolution (T31, gx3v7)
 - 1. base control run
 - 2. base 2xCO2 run
 - 3. flat Antarctica control run
 - 4. flat Antarctica 2xCO2 run

Role of antarctic land height

- mainly analyze years 80 to 109
- use partial radiative perturbation (PRP) method to compute forcing and feedbacks
 - lapse rate (LR)
 - Planck (PL)
 - surface albedo (ALB)
 - water vapor (WV)
 - cloud (CL)
- regions defined by polar circles

Top of atmosphere radiation budget

Top of atmosphere radiation budget

Top of atmosphere radiation budget

Surface air temperature increase due to CO_2 doubling

Northward atmospheric heat transport

Northward oceanic heat transport

Radiative forcing and feedbacks

Difference (base - flat AA)

Compare local feedbacks

Why this LR feedback difference?

Additional PRP sensitivity runs ...

label	variable(s) from flat AA model setup in base model setup
LRPLSens	surface air (T _s) and atmospheric (T _a) temperature
LRsens	atmospheric temperature T_{α}
PLSens	T_s and control T_a with added ΔT_s as in PL

Why this LR feedback difference?

... suggest that LR feedback mainly depends on surface

Attempt to analyze budgets

Arctic - Antarctic

HS:heat storage; FSUP=FSU+PL

Summary/Conclusions

- antarctic surface height plays an important role for polar amplification asymmetry
- flat Antarctica allows for warm air advection from lower latitudes
 - once the ice shield is lost warm air advection might make restoration of ice shield more difficult
- local feedbacks and ocean heat transport play important roles as well
- other important factors investigated elsewhere

thank you!

Manuscript in review: Salzmann, M.: The polar amplification asymmetry: Role of antarctic surface height, Earth Syst. Dynam. Discuss., doi:10.5194/esd-2016-74, in review, 2017.

U.S. contributions:

- satellite data product: NASA CERES (EOS, Langley)
- model: CESM (CGD/NCAR, sponsored by NSF and DOE)
- analysis software: NCL (UCAR/NCAR/CISL/TDD)

Supported by the German Research Foundation (DFG) in TRR 172 "ArctiC Amplification: Climate Relevant Atmospheric and SurfaCe Processes, and Feedback Mechanisms, (AC)3", sub-project E01 "Assessment of Arctic feedback processes in climate models" (INST 268/331-1).

Temporal evolution

UNIVERSITÄT LEIPZIG

Air temperature profiles

Regional Feedbacks

