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Global Hydrological Cycle

Higher surface temperature — increased
evaporation — more precipitation?
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Global Hydrological Cycle

for CO, increase global models yield

» ~/% increase water vapor mixing ratio per
kelvin temperature increase (in agreement with
expectation according to Clausius-Clapeyron
relation)

» ~2% increase in surface precipitation per
kelvin temperature increase (“muted
response”)

Held and Soden, J. Climate, 2006 January 25, 2017 2/24



Global Hydrological Cycle
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Global Hydrological Cycle

P = Mg
AN
upward ~ water vapor
mass flux ~ mixing ratio
precipitation out of the in the
boundary  boundary
layer layer
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Global Hydrological Cycle

for CO, increase global models yield

» ~/% increase in water vapor mixing ratio per
Kelvin temperature increase (in agreement
with expectation according to
Clausius-Clapeyron relation)

» ~2% increase in surface precipitation per
Kelvin temperature increase (“muted
response”)

» overall circulation slowdown
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Global Tropospheric Heat Budget

if sensible heat flux is assumed to remain constant:

AR, = LAP

e AN
perturbation radiative precipitation
cooling perturbation

» precipitation change limited by capability of
the tropsphere to radiate away heat

Allen and Ingram, Nature, 2002 January 25, 2017
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Response to CO,; increase

» CO, absorbs terrestrial radiation
» makes it harder to radiate away heat directly

» expect slowdown of subsiding branch of
Hadley ciculation

» adding CO, at fixed surface temperature
leads to precipitation decrease

» found out long ago in some of the very early
atmosphere-only model runs
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Response to CO,; increase

» CO, radiative effect dampens precipitation
response to surface warming
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Response to Aerosols

» aersols mainly scatter and/or absorb solar
radiation

» expect weaker damping

» expect larger hydrological sensitivity

Salzmann, Sci Adv., 2016 January 25, 2017 9 /24



Coupled Climate Model Data

Coupled Model Intercomparision Project, Phase
5 (CMIP))

» single-forcing runs from 15 models:

» only greenhouse anthropogenic gases

(historical GHG, 46 runs)

» only anthropogenic aerosols (historicalAero,
28 runs, only 8 models)

» all forcings (historical, 71 runs)

Taylor et al., Bull. Am. Meteorol. Soc., 2012 January 25, 2017 10/ 24



Surface Temperature Change

» CMIP5 pre-industrial to near present day
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Precipitation Change

» CMIP5 pre-industrial to near present day
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Hydrological Sensitivity

_ OP(in%)
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» percentage change of precipitation per K
warming or cooling
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Hydrological Sensitivity

» CMIP5 pre-industrial to near present day
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Hydrological Sensitivity - Result

> only GHG: 1.7+0.4%K "]

» only Aerosol: 3.6+0.5%K"!

Salzmann, Sci. Adv., 2016 January 25,2017 15/ 24



Hydrological Sensitivity - Result
» hydrological sensitivity for aerosol is roughly
twice as large as that for GHG

» similar to the one for temperature surface
increase only

» but still smaller than the 7%K=" vapor increase
(consistent with water vapor radiative

feedback)

Salzmann, Sci. Adv., 2016 January 25, 2017 16 /24



Strange Formula

since AT = ATg + AT, and AP = APg + APy:

5P AP+ AP,
65T ATg + ATy

and thus:

ap—FaT— (5—P) ATg + (5—P> AT,
G oT A

where (%) and (%), are the hydrological

sensitivities from the single forcing experiments.

Salzmann, Sci. Adv., 2016 January 25, 2017
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Schematic: changes pre-industrial to
recent past

only GHG only aerosol
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based on CMIP5 models with a realistic 20th century warming
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But: effects do not cancel regionally!

b) aerosol

1 [ ————] ] ] RN 1
-0.45 -0.35 -0.25 -0.15 -0.05 0.05 0.15 0.25 0.35 0.45 mm day

Salzmann, Sci. Adv., 2016 January 25,2017 19 /24



Future?
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Schematic: future changes

only GHG only aerosol sum

B temperature mEprecipitation

light colors: informed guess
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Summary

» robust response of the hydrological cycle to
aerosol cooling

» models with realistic 20th century warming
show almost vanishingly small precipitation
increase

» as future will be dominated by CO, warming
clear signal will emerge

Salzmann, Sci. Adv. 2016 January 25, 2017 22 /24



» thank you!

Reference: M. Salzmann, Global warming without global mean
precipitation increase?. Sci. Adv. 2, e1501572,
doi:10.1126/sciadv.1501572, 2016.

U.S. contributions:

> contributions to CMIP5 from modeling groups at NOAA,
NASA, NCAR

» analysis software: NCL (UCAR/NCAR/CISL/TDD)
> software for data distribution (ESG) from PCMDI/DOE

ongoing mission by NASA and JAXA with other international
collaborators: Global Precipitation Measurement (GPM) mission
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Global mean circulation
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Global Tropospheric Heat Budget

Womi = SWep, + LW, + LHF + SHF

oo
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radiation radiation radiation
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Global Tropospheric Heat Budget
net radiation balanced by LHF and SHF
Roet = MWemi — SWops — IW,p, = LHF + SHF
or since globally LHF = LP:

Rnet = LP + SHF
where

» L latent heat of evaporation

» P precipitation
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Model classification
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Additivity -
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