
5. Diagnostics
§ Scalar variance is calculated with each pollutant block Ri. λi is the variance decay 

rate.

§ Divergence of Lagrangian trajectories. λ0 is the largest Lyapunov exponent.
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1. Introduction
§ Mixing refers to the homogenization of a scalar field. Although it is an important

subject in fluid dynamics, mixing has not attracted much attention in the urban air
quality literature, where processes such as dispersion and ventilation have been
highlighted. For certain applications (e.g. the accidental release of toxic chemicals),
however, knowledge of the mixing rate is extremely useful.

§ This work investigates the mixing of a passive scalar in a unit-aspect-ratio street
canyon. Using large-eddy simulation, the mixing rate is characterised using the decay
rate of the variance. The mixing is inhomogeneous and strongly influenced by the
mean circulation; the evolution is qualitatively distinct within (i) the central vortex; (ii)
corners excepting the upper downwind one; (iii) remaining regions. For each
region, separate regimes related to advection and mixing can be discerned.

§ Following established theoretical predictions, the mixing rates are related to the
divergence of Lagrangian trajectories (Lyapunov exponent) and Péclet number. On
account of the open boundary and inhomogeneous mixing, sensitivity of the
scalar field to the initial conditions persists in the long-time limit.

4. Model Configuration
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2. Stirring and Mixing

§ Pure stirring (advection)

§ Stirring and mixing

3. Theoretical Background: whether theories on mixing carry over to the 
literature of urban environment?

Theoretical predictions for the variance decay
rate depend on the existence of a well-defined
large-scale velocity field.
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6. Results
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Table 2 Particle divergence timescales after  Eq. (2)

Table 1 Variance-decay timescales after Eq. (1)

Fig.2 (Left) Streamline; (right) streamwise
energy spectra inside the canyon at
z=0.05H and 0.5H [5].

t=2

t=20

Fig.1 Creation of small-scale structures and associated
homogenisation (left panel [1]; right panel [2]).

Ø Initial conditions:
B: Bottom
C: Centre
T: Top
L: Left
R: Right

Ø e.g.
CL refers to the centre-left
pollutant block;
TR denotes the top-right one;
CC located at the canyon centre.

Fig.3 (Top) Schematic diagram of the computational
domain; (bottom) setup of initial conditions.

Fig.6 Variance decay of the passive scalar for
different initial conditions.

Initial variance decay depends on Ri. For
large t (≳800s), the variance decay rate is
essentially independent of Ri.

Fig.4 Long-time concentration
fields (t=1000s) for different initial
conditions.

On account of the open
boundary and inhomogeneous
mixing, sensitivity of the scalar
field to the initial conditions
persists in the long-time limit.

Following established theories, mixing rates of
Set2 and Set3 appear to be controlled by the
Lyapunov exponents.

Large-scale nature of the canyon flow:

Initial variance decay rate for Set1 (central vortex) appears to be controlled by diffusion across
streamlines. The mixing rate can be estimated from analytical predictions for cellular flow [6].

Fig.7 Illustration of a nominal
vortex of radius R. The
tangential velocity V over R is
used on calculating the Péclet
number: Pe = (2R)V/κ.

Fig.8 Variance decay in the long-time limit. (Top)
Normalisation is against the mean <C>; (bottom)
normalisation is over the initial value C0.

Fig.5 Decay of the mean concentration within the
canyon.

Variance decay in the long-time limit is
controlled by the escape of scalar across the
open boundary at the roof level.

Set1

Set2 Set3

The mean concentration decays exponentially
for all initial conditions.

7. Key Timescales

For a spatially smooth, large-scale velocity field,
e.g.

the variance decay rate is predicted by the
Lyapunov exponents in the absence of solid
boundaries [3]. With no-slip boundary conditions,
the long-time behaviour differs [4].

xn+1 = xn + a sin(yn + �n)

yn+1 = yn + cos(xn+1 + �n)
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