

An Analysis of Cumulus Cloud-Top Properties for 0-1 hour Convective Initiation Nowcasting using Himawari-8 Infrared and Visible Fields Seongmin Kim¹, John R. Mecikalski¹, and Christopher P. Jewett²

Introduction

- Short-term, 0-1 hour Convective Initiation (CI) forecasting remains a significant challenge after years of research
- New generation of geostationary satellites dictate that we need to understand the utility of these data in research and operational meteorology
- The study goal is to understand how the improvements in spatial, temporal, and spectral resolutions can be utilized in detecting and forecasting Cl. *Himawari-8* satellite is the primary instrument used, in advance of GOES-R

Wave length	Band	Spatial resolution	Central w [µ	ave length m]	• Spec	Spectral Resolut								
	number	at SSP [lm]	AHI-8 (Himawari-8)	AHI-9 (Himawari-9)	ban	ds – 12	band							
0.47	1	1	0.47063	0.47059	(1.6	to 13.3	um)							
0.51	2	1	0.51000	0.50993										
0.64	3	0.5	0.63914	0.63972	 Spat 	cial Reso	olutic							
0.86	4	1	0.85670	0.85668	km -	_ impro	vom							
1.6	5	2	1.6101	1.6065		IIIpiO	venit							
2.3	6	2	2.2568	2.2570	curr	ent GOI	ES 1 1							
3.9	7	2	3.8853	3.8289	. .		.							
6.2	8	2	6.2429	6.2479	Iemporal Keso									
6.9	9	2	6.9410	6.9555	min full-disk; 2.5									
7.3	10	2	7.3467	7.3437	· · · · · · · ·									
8.6	11	2	8.5926	8.5936	scan in Japan &									
9.6	12	2	9.6372	9.6274	+140	torgot a								
10.4	13	2	10.4073	10.4074	two target areas									
11.2	14	2	11.2395	11.2080	wor	k)								
12.4	15	2	12.3806	12.3648		``)								
13.3	16	2	13.2807	13.3107										
				Pasian 1		Parion 2	Bogion							
	Full [Disk 0 [min]		Region 1 North-Eastern	Region 2	Region 3 (Target Area)//	Region Landmark							
	every n	• []	,	Japan Area)	Japan Area)	every 2.5	every 0.5							

Himawari-8/9

Himawari-8 and AHI

Objectives

every 2.5 [min.] every 2.5 [min.]

Region 4

- Understand which spectral channel differences and their time trends ("interest fields") are useful in observing attributes associated with the CI process
- How those satellite "interest fields" characteristics differ in various regions (Tropics vs. Mid-Latitudes)
- CI forecasting improvements with AHI "interest fields"

¹Atmospheric Science Department, University of Alabama in Huntsville, Huntsville, Alabama ²Earth System Science Center, University of Alabama in Huntsville, Huntsville, Alabama

Data & Methodology

All Himawari-8 AHI data were provided by the Japan Meteorological Agency under a Data Exchange Agreement with NOAA and the University of Alabama in Huntsville. We are grateful for this collaboration. POCs: Hiroshi Koide & Yasuhiko Sumida.

					Bank (Linterest Fields Mean (K) Std dev (K)					Mean Std dev Bank Clusterest Fields					Moon (K)	Std day (K)							
	PC1 PC2		Top Fields		1	6 2-10 4 um	-31.2	ς) 5τα γ	2 59	Rank	CI Interest Fields	(K)	(K)	1	10-min 10.4 um	-5 1	A 83						
							<u></u>	2	6.2-13.3 um	-22.3	f	5.25			()	()	2	10-min 6 2 - 10 4 μm) 46	4.05			
IF1	F1 8.6 - 10.4 μm 0.50 0.52		0.52	1	10-min 8.6 - 10.4 µm		6 2-12 4 um	-30.1	Ş	3.22	1	10-min 8.6 - 10.4 μm	0.2	2.70	2	10-min 6.9 - 10.4 μn	1 4.0 1 4.1	3 55					
IF2	162 10-min 8.6 - 10.4 µm 0.52) 52	-0 41				6.2-7.3 um	-15.3	L	1.07					<u></u>	10-min 6 2 - 7 3 μm	16	2 28				
	112 10-11111 8.0 - 10.4 μ11 0.52		5.52	0.11	2	8.6 - 10.4 μm	5	7.3-10.4 um	-15.9	Z	1.94	2	8.6 - 10.4 μm	-1.6	1.87	5	10-min 7 3 - 10 4 un	1.0 1 3.0	2.20				
					Trispectral with 10.4 µm : (8.6-	6	6.9-7.3 um	-6.4	2	2.78	2	Trispectral with 10.4	2 7	2 00	6	10-min 6 9 - 7 3 μm	1 1	1 78					
152	Trispectral with 10.4 μ m : (8.6-			0.48	3	10.4) - (10.4-12.4) μm	7	7.3-12.4 um	-14.8	Ĺ	1.64	.	μm 10-min Trispectral with	-2.7	2.08	7	10-min 6.2 - 6.9 µm	0.5	0.88				
IFJ	5 10.4) - (10.4-12.4) µm 0.50		5.50	0.40	л	10 mains Trians a stand with 10 4 mas	8	6.2-6.9 μm	-8.9	1	L.50	4	10.4 um	0.4 3.38		10-min 10.4 - 12.4	010	0.00					
IF4	10-min Trispectral with 10.4 μm 0.49		0.49	-0.58	4	10-mm mspectral with 10.4 μm		·					P			8	μm	-0.2	1.82				
	ExpVar (%) 75.37								(Clasiati														
			16.19 91.56		(Glaciation)		(Cloud Depth)				Glaciatio	(Opdrait Strength)											
	Figonya	Figonvoluo 2010CE		0.65		· · · /																	
	Ligenva	IUC		5.01	0.05			Rank	c Cl Interest Fie	elds N	Лean	SD											
		PC1	PC2	РС	3		Top Fields	1	1.6 - 3.9 μn	n 0.	.1495	0.068											
IF1	1.6 µm	0.38	0.32	0.1	.3		16-39um	2	1.6 μm	0	.1883	0.070											
IF2	10-min 1.6 µm	0.38	-0.30	0.1	.5	-	$1.0 \ 5.0 \ \mu m$	3	10-min 1.6 µ	ım -0	.0070	0.057		(Visible	a								
IF3	2.3 μm	0.31	0.29	-0.3	-0.32		$\frac{10}{10} \text{ min} \frac{1}{16} \text{ um}$	4	10-min 2.3 µ	um 0.	.0072	0.035											
IF4	10-min 2.3 μm	0.33	-0.21	-0.2	22	-	$10^{-1111} 1.0 \mu m$	5	10-min 1.6 - 3.9	9 μm 0.	.0030	0.062		Reflectance)									
	3.9 μm		0.22	0.3	59 5	-	$10 \min 1.6 = 2.0 \lim_{n \to \infty} 10 \min 1.6 = 2.0 \lim_{n \to \infty} 10 \lim_$	6	2 .3 μm	. 0.	.1186	0.044											
IFO	16-23 μm	0.25	0.33	0.1	.5 .4	-	2.2 µm	7	2.3 - 3.9 μn	n 0.	.0799	0.049											
,	10-min 1.6 - 2.3		0.10		-	-	$2.5 \mu m$	8	1.6 - 2.3 μn	n 0.	.0696	0.053											
IF8	μm	0.24	-0.23	0.4	0		$2.5 - 5.9 \mu \text{m}$	-	· · · · · · · · · · · · · · · · · · ·														
IF9	2.3 - 3.9 μm	0.27	0.23	-0.4	14	2	5 1.6 - 2.3 μm		Futuro Morke														
	10-min 2.3 - 3.9	0.00	0.20	0.7												INS							
	μm 16-39.um	0.23	-0.39	-0.2			(Visible																
	$10 - 3.5 \mu m$	0.35	0.51								• •	4	- - !					0	•				
IF12	μm	0.32	-0.43			F	Reflectance) • Conduct similar statistical analyses for Japan & example of the second statistical analyses for Japan & ex								n & exam	ine t	ne						
	ExpVar (%)	34.03	25.08	20.9	92 80.03	-			diffence cooling would be able to the late for Classed the sub-														
	Eigenvalue	4.083	3.010	2.5	11				umerer	ices		Idlik	ling	the best h	eius		U d	nu then	CITU	J.dl			
									valuas - Tranics Vc Mid Latitudas														
						values – Hupics. vs. Wild-Latitudes																	
elv useful in understanding CL attributes						 Apply the results to real GOES-R data to understand their 																	
						<u>improvements in CI detection over the Western Hemisphere</u>																	
72 um) provido como loval of contribution					Iltiliza 2 E min 8 20 cae ranid caan data in lanan ta																		
7.3 µm) provide some level of contribution					 Utilize 2.5-min & 30 sec rapid scan data in Japan to 																		

97th AMS Annual Meeting, Seattle, WA 22 – 26 January 2017

CI Definition: 35 dBZ or above radar echo at the surface or -10°C height (Roberts and Rutledge 2003,

Primary Dataset: WSR-88D in Guam (S-band) and Japan (C-band), AHI Imagery – 0.64 and 11.2 μm

Evaluate all available satellite interest fields – a total of 154 parameters for AHI (139 IR and 15 VIS

Eliminate redundant fields, using correlation coefficient (CC) analysis and prior literature works. Categorize all remaining fields into appropriate processes in developing cumulus clouds: cloud depth,

Perform principal component analysis (PCA) to further reduce fields and rank the unique, best fields

Critical Values (Guam; Mean and S.D)

understand their usage in CI nowcasting