Impact of model resolution on urban heat island simulation

Gianluca Mussetti¹,²,³, D. Brunner¹, S. Henne¹, S. Schubert⁴, J. Allegrini²,³, J. Carmeliet²,³

¹ Laboratory for Air Pollution / Environmental Technology, Empa, Switzerland, ² Laboratory for Multiscale Studies in Building Physics, Empa, Switzerland, ³ Chair of Building Physics, ETH Zürich, Switzerland, ⁴ Geography Department, Humboldt University of Berlin, Germany

Introduction

- High resolution needed to resolve heterogeneity of urban surfaces, topography and their influence on heat fluxes and air flow
- Urban climate simulations are performed at various resolutions. However studies on the impact of model resolution are missing
- We performed urban climate simulations at various resolutions to analyze its influence on the UHI effect

Method

The mesoscale NWP model COSMO in climate mode (CCLM) is used at various horizontal resolutions down to 250 m.

<table>
<thead>
<tr>
<th>COSMO model (version 5.0)</th>
<th>Period</th>
<th>22 June – 8 July, 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Horizontal resolution</td>
<td>1 km, 500 m, 250 m</td>
<td></td>
</tr>
<tr>
<td>Vertical resolution</td>
<td>76 levels</td>
<td></td>
</tr>
</tbody>
</table>

Urban Canopy Model: Bulk (standard) DCEP (BEP type)

Boundary condition: COSMO-2 analysis

Input data

- Urban fraction: Soil sealing 2 m res (EEA)
- Building data: LoD 1 building data (Local)
- Urban vegetation: LAI = 3, z0 = 0.1 m

CCLM is coupled to the Double Canyon Effect Parametrization (DCEP) model, which is a multi-layer urban canopy model based on the Building Effect Parameterization (BEP).

Results

- Daytime air temperature shows a moderate dependence on resolution
- Intra-urban variability of air temperature better captured at high resolution
- Small-scale features related to topography and lake show up at higher resolution, UHI at outskirts more pronounced

Conclusion

- Night-time air temperature largely independent of model resolution
- Daytime air temperature shows a moderate dependence on resolution
- Intra-urban variability of air temperature better captured at high resolution
- Small-scale features related to topography and lake show up at higher resolution, UHI at outskirts more pronounced

Further information

We acknowledge the financial support from Empa. We thank MeteoSwiss for providing the COSMO-2 boundary conditions and the meteorological data. We thank Hiroki Sayama from Tokyo Tech for contributing to the work and Antoine Berchet for helping with pre- and post-processing.

Contact: Gianluca Mussetti, Email: gianluca.mussetti@empa.ch

Simulated average spatial distribution of T (at 10 m) at (a) 00 local time and (b) 12 local time. Effects of DCEP urban parameterization on UHI are larger at night than during the day as expected. Effects of resolution are relatively minor.

Question: Is it worth to simulate at high resolution?