The Performance Impacts of Machine Learning Design Choices for Gridded Solar Irradiance Forecasting

Features work from "Evaluating Statistical Learning Configurations for Gridded Solar Irradiance Forecasting", *Solar Energy*, Under Review.

David John Gagne II, NCAR

Sue Ellen Haupt, NCAR Amy McGovern, University of Oklahoma John Williams, The Weather Company, an IBM Business Seth Linden, NCAR Doug Nychka, NCAR

Motivation: Solar Irradiance

- Solar electricity generation continues to grow rapidly and decrease in cost
- Accurate solar irradiance predictions needed by electric utilities to balance supply with expected demand
- Solar power is being generated more at sites that do not have observations or historical records of irradiance
- Contributions
 - Developed a Gridded Atmospheric Forecasting System (GRAFS) for solar irradiance
 - Evaluated different machine learning model configurations for predictive accuracy at unobserved sites for day ahead solar irradiance forecasts

Solar irradiance predictions are needed for sites without historical data (source:

http://www.adventurecats.org/cat-tales/maine-coon-deaf-sailors-ears-sea/)

Solar Forecasting Ingredients

- Position of sun in sky
- Scattering by atmosphere & aerosols
- Cloud cover effects
- Precipitation
- Non-meteorological obstructions

Solar factors diagram from Gagne (2014)

Solar Data

- NOAA Global Forecast System (GFS)
 - Interpolated to 4 km grid
 - 3 hourly output interpolated in time to hourly output
 - Variables: Solar irradiance, temperature, cloud cover, sun angles, spatial statistics
 - Evaluation Period: June-August 2015
- Oklahoma Mesonet (McPherson et al. 2007)
 - Sites record solar irradiance every 5 minutes with a Li-Cor pyranometer
 - Hourly-averaged irradiance and clearness index computed from raw observations
 - Clearness index: ratio of observed irradiance to topof-atmosphere irradiance

Machine Learning Configurations: Solar

- Mesonet stations randomly split into "training" and "testing" sites
- Evaluation period split into training and testing days: every 3rd day used for testing
- Models: Random Forest, Gradient Boosting, Lasso Linear Regression
- Multi Site Training
 - One machine learning model fitted with all training sites' data
 - Applied at testing sites using input data collocated with site
- Single Site Training
 - Separate machine learning models fitted at each training site
 - Predictions made at training sites and interpolated to testing sites with Cressman interpolation (Cressman 1959)
 - Similar to approach used by Gridded MOS (Glahn et al. 2009)

Gradient Boosting Regression

- Stagewise, additive decision tree ensemble
- Initial tree predicts exact value, subsequent trees predict residuals of total predictions from all previous trees
- Used by top 4 finishers of AMS Solar Energy Prediction Contest

Detailed Configuration

- Random Forest
 - Default: 500 trees, min samples split 10, features=sqrt
 - Short Trees: max depth 3
 - All Features: features = all
- Gradient Boosting
 - Default: loss="lad", 500 trees, max depth 5, features = sqrt, learning rate=0.1
 - Least Squares: loss = "ls"
 - Big Trees: min sample split = 10
 - All Features: features = "all"
 - Slow Learning Rate: learn rate = 0.01
- Lasso Linear Regression
 - Top 16 variables by F-Score, Alpha=0.5

Solar: GFS Clearness Index Error

GFS Clearness Index Prediction Models

Gradient Boosting: Optimizes with MAE, Tree Depth of 5, Samples subset of features Gradient Boosting Least Squares: Uses MSE instead of MAE Gradient Boosting All Features: Evaluates all input features Gradient Boosting Slow Learning Rate: Uses a learning rate of 0.01 instead of 0.1 Gradient Boosting Big Trees: Allows trees to grow to minimize training samples in each branch Random Forest: fully grown trees, evaluates subset of features Random Forest All Features: evaluates all features Random Forest Short Trees: tree depth of 3

Linear Regression: Lasso with top 16 variables Raw GFS: Downward shortwave irradiance Persistence: Interpolated irradiance at test sites based on observations from 24 hours before

GFS Solar Distributions

GFS Forecast Distributions

GFS Solar Station Errors

Next Steps: Deep Learning

- Investigating the use of deep learning models for weather feature and regime identification
- Goal: Train models to recognize multiscale features in NWP output
- Potential application for improved solar irradiance mean and variability forecasts based on weather regime
- Many other weather and climate applications

Deep Convolutional Generative Adversarial Network architecture from Radford et al. (2016)

Generative Adversarial Networks

Unsupervised method of learning complex feature representations from data Requires 2 deep neural networks

Discriminator: determines which samples are from the training set and which are not

Both networks have a "battle of wits" either to the death or until the discriminator is fooled often enough **Generator**: Creates synthetic examples similar to training data to fool discriminator

Advantages

- Unsupervised pre-training: learn features without needing a large labeled dataset
- Dimensionality reduction: reduce image to smaller vector
- Learns sharper, more detailed features than autoencoder models
- Do not need to specify a complex loss function

Preliminary Results: Mean Sea Level Pressure

- Trained on 4096 GEFS pressure forecasts
- Produces "realistic" pressure fields after 100 epochs of training

- Generator uses 100-value vector as input
- Each input adjust different parts of field

Summary

- Developed gridded statistical forecasting system for solar irradiance
- Evaluated different machine learning models and configurations on their ability to predict irradiance at multiple sites
- Gradient Boosting consistently showed lowest errors
- All machine learning models underestimated cloud cover frequency
- ML models had lower errors at sites with fewer clouds
- Generative Adversarial Networks show potential for extracting information from weather data

Acknowledgements

- Rich Loft
- Tom Hamill
- The Oklahoma Mesonet

Contact Me

- Email: <u>dgagne@ucar.edu</u>
- Twitter: @DJGagneDos
- Github: github.com/djgagne