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Motivation:	Solar	Irradiance

Solar	irradiance	predictions	are	needed	for	sites	
without	historical	data	(Source:	
http://www.adventurecats.org/cat-tales/maine-coon-deaf-sailors-ears-sea/)

• Solar	electricity	generation	continues	
to	grow	rapidly	and	decrease	in	cost
• Accurate	solar	irradiance	predictions	
needed	by	electric	utilities	to	balance	
supply	with	expected	demand
• Solar	power	is	being	generated	more	
at	sites	that	do	not	have	observations	
or	historical	records	of	irradiance
• Contributions

• Developed	a	Gridded	Atmospheric	
Forecasting	System	(GRAFS)	for	solar	
irradiance	

• Evaluated	different	machine	learning	
model	configurations	for	predictive	
accuracy	at	unobserved	sites	for	day	
ahead	solar	irradiance	forecasts
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Solar	Forecasting	Ingredients

• Position	of	sun	in	sky
• Scattering	by	atmosphere	&	
aerosols
• Cloud	cover	effects
• Precipitation
• Non-meteorological	
obstructions
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Solar	factors	diagram	from	Gagne	(2014)
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Solar	Data
• NOAA	Global	Forecast	System	(GFS)

• Interpolated	to	4	km	grid
• 3	hourly	output	interpolated	in	time	to	hourly	
output

• Variables:	Solar	irradiance,	temperature,	cloud	
cover,	sun	angles,	spatial	statistics

• Evaluation	Period:	June-August	2015
• Oklahoma	Mesonet (McPherson	et	al.	2007)

• Sites	record	solar	irradiance	every	5	minutes	with	a	
Li-Cor pyranometer

• Hourly-averaged	irradiance	and	clearness	index	
computed	from	raw	observations

• Clearness	index:	ratio	of	observed	irradiance	to	top-
of-atmosphere	irradiance
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Machine	Learning	Configurations:	Solar

• Mesonet stations	randomly	split	into	“training”	and	
“testing”	sites

• Evaluation	period	split	into	training	and	testing	days:	every	
3rd day	used	for	testing

• Models:	Random	Forest,	Gradient	Boosting,	Lasso	Linear	
Regression

• Multi	Site	Training
• One	machine	learning	model	fitted	with	all	training	sites’	data
• Applied	at	testing	sites	using	input	data	collocated	with	site

• Single	Site	Training
• Separate	machine	learning	models	fitted	at	each	training	site
• Predictions	made	at	training	sites	and	interpolated	to	testing	

sites	with	Cressman interpolation	(Cressman 1959)	
• Similar	to	approach	used	by	Gridded	MOS	(Glahn et	al.	2009)
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Gradient	Boosting	Regression

• Stagewise,	additive	decision	tree	ensemble
• Initial	tree	predicts	exact	value,	subsequent	trees	predict	residuals	of	
total	predictions	from	all	previous	trees
• Used	by	top	4	finishers	of	AMS	Solar	Energy	Prediction	Contest

Irradiance	>500?

0.1 0.8

Temperature>30?

-0.1 0.3

Dewpoint>2?

0.05 -0.03

+	0.1	*	+	0.1	*	
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Detailed	Configuration

• Random	Forest
• Default:	500	trees,	min	samples	split	10,	features=sqrt
• Short	Trees:	max	depth	3
• All	Features:	features	=	all

• Gradient	Boosting
• Default:	loss=“lad”,	500	trees,	max	depth	5,	features	=	sqrt,	learning	rate=0.1
• Least	Squares:	loss	=	“ls”
• Big	Trees:	min	sample	split	=	10
• All	Features:	features	=	“all”
• Slow	Learning	Rate:	learn	rate	=	0.01

• Lasso	Linear	Regression
• Top	16	variables	by	F-Score,	Alpha=0.5
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Solar:	GFS	Clearness	Index	Error
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Gradient	Boosting:	Optimizes	with	MAE,	Tree	Depth	
of	5,	Samples	subset	of	features
Gradient	Boosting	Least	Squares:	Uses	MSE	instead	
of	MAE
Gradient	Boosting	All	Features:	Evaluates	all	input	
features
Gradient	Boosting	Slow	Learning	Rate:	Uses	a	
learning	rate	of	0.01	instead	of	0.1
Gradient	Boosting	Big	Trees:	Allows	trees	to	grow	to	
minimize	training	samples	in	each	branch
Random	Forest:	fully	grown	trees,	evaluates	subset	of	
features
Random	Forest	All	Features:	evaluates	all	features
Random	Forest	Short	Trees:	tree	depth	of	3
Linear	Regression:	Lasso	with	top	16	variables
Raw	GFS:	Downward	shortwave	irradiance
Persistence:	Interpolated	irradiance	at	test	sites	
based	on	observations	from	24	hours	before



GFS	Solar	Distributions
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GFS	Forecast	Distributions
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GFS	Solar	Station	Errors
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Next	Steps:	Deep	Learning

• Investigating	the	use	of	deep	
learning	models	for	weather	
feature	and	regime	identification
• Goal:	Train	models	to	recognize	
multiscale	features	in	NWP	output
• Potential	application	for	improved	
solar	irradiance	mean	and	
variability	forecasts	based	on	
weather	regime
• Many	other	weather	and	climate	
applications
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Deep	Convolutional	Generative	Adversarial	Network	
architecture	from	Radford	et	al.	(2016)



Generative	Adversarial	Networks

13

Unsupervised	method	of	learning	complex	feature	representations	from	data
Requires	2	deep	neural	networks

Discriminator:	determines	which	samples	are	
from	the	training	set	and	which	are	not

Generator:	Creates	synthetic	examples	
similar	to	training	data	to	fool	discriminator	

Both	networks	
have	a	“battle	
of	wits”	either	
to	the	death	or	

until	the	
discriminator	is	
fooled	often	
enough

Advantages
• Unsupervised	pre-training:	learn	features	without	needing	a	large	labeled	dataset
• Dimensionality	reduction:	reduce	image	to	smaller	vector
• Learns	sharper,	more	detailed	features than	autoencoder models
• Do	not	need	to	specify	a	complex	loss	function



Preliminary	Results:	Mean	Sea	Level	Pressure
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• Trained	on	4096	GEFS	pressure	forecasts
• Produces	”realistic”	pressure	fields	after	

100	epochs	of	training

• Generator	uses	100-value	vector	as	input
• Each	input	adjust	different	parts	of	field



Summary
• Developed	gridded	statistical	forecasting	system	for	solar	irradiance
• Evaluated	different	machine	learning	models	and	configurations	on	
their	ability	to	predict	irradiance	at	multiple	sites
• Gradient	Boosting	consistently	showed	lowest	errors
• All	machine	learning	models	underestimated	cloud	cover	frequency
• ML	models	had	lower	errors	at	sites	with	fewer	clouds
• Generative	Adversarial	Networks	show	potential	for	extracting	
information	from	weather	data
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