Importance and Impacts

A TDS observation can provide a warning forecaster with confirmation of a damaging tornado, especially in events where ground truth may not be available such as when the tornado is rain-wrapped or occurring at nighttime.

Defining a Tornado Debris Signature (TDS)

Tornadic debris contains a diverse range of shapes, sizes, and orientations of meteorological and non-meteorological scatters. When debris are lofted into the beam of a polarimetric radar, a tornadic debris signature (TDS) is formed.

Characteristics of a TDS

- Presence of velocity couplet
- Decrease in differential reflectivity (Z_{DR}) to around zero
- Increase in horizontal reflectivity (K_{dp})
- Decrease in co-polar cross correlation coefficient (ρ_{hv})
- Higher values of azimuthal shear as a proxy for vertical vorticity
- Thresholds by minimum height does little to separate lower intensity tornadoes (EF2)
- Further discrimination analyses needed

Challenges of a Standalone Algorithm

The offset of the time between the polarimetric moments and azimuthal shear. Polarimetric moments are collected before velocity data on separate revolutions of the radar. Note* The difference in timestamps due to the split cuts of lower tilts.

Manual vs. Automated Tracking

Previous research has shown that manual versus automated identification resulted in different parameter distributions, and low-level elevation scans on the WSR-88D separate the surveillance and Doppler scans, which can lead to disparate locations of polarimetric signature and Doppler velocity couplet.

Note The whiskers on this boxplot denote the full range of the data. (0th to the 100th percentile)

Methodology

“Definite/Maybe/Loose” Classifications

- **Definite TDS**
 - Velocity couplet
 - Minimum in ρ_{hv} values
 - Reflectivity greater than 40 dBZ

- **Maybe TDS**
 - One of the above specifications for a “Definite TDS” is missing (e.g. minimum in ρ_{hv} values with velocity couplet)

- **Loose TDS**
 - Visual recognition of a TDS using only one of the above specifications (e.g. minimum ρ_{hv} only)

Future Work

- Expanding the dataset to include more recent tornado events
- Build a training dataset based on specific geospatial thresholds (beam height, elevation, range) and temporal thresholds (TDS longevity)
- Examine the influence of Z_{DR} biases
- Land cover characteristics

This poster was prepared by Taylor Faires with funding provided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement NA11OAR4320072, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of NOAA or the U.S. Department of Commerce.