

Defining a Tornado Debris Signature (TDS)

Tornadic debris contains a diverse range of shapes, sizes, and orientations of meteorological and non-meteorological scatters. When debris are lofted into the beam of a polarimetric radar, a tornadic derbis signature (TDS) is formed.

Importance and Impacts

A TDS observation can provide a warning forecaster with confirmation of a damaging tornado, especially in events where ground truth may not be available such as when the tornado is rain-wrapped or occurring at nighttime.

This poster was prepared by Taylor Faires with funding provided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement #NA110AR4320072, U.S. Department of Commerce. The statements, findings, conclusions , and recommendations are those of the author(s) and do not necessarily reflect the views of NOAA or the U.S. Department of Commerce.

Developing a Tornado Debris Signature Algorithm Taylor Faires, Kiel Ortega, Darrel Kingfield, & Bria Hieatt OU/CIMMS & NOAA/NSSL

Challenges of a Standalone Algorithm

The offset of the time between the polarimetric moments and azimuthal shear. Polarimetric moments are collected before velocity data on separate revolutions of the radar. Note^{*} The difference in timestamps due to the split cuts of lower tilts

Thresholds by minimum height does little to separate lower intensity tornadoes (\leq EF2)

 Z_{H} bins due to lack of confident TDS signal at higher elevations

Correlation Coefficient vs. Reflectivity For EF2+ Events & Beam Height \leq 3 km

Sharper decline in median ρ_{HV} at $Z_{\rm H} \geq 55 \, \rm dBZ$

Manual vs. Automated Tracking

Previous research has shown that manual versus automated identification resulted in different parameter distributions, and lowlevel elevation scans on the WSR-88D separate the surveillance and Doppler scans, which can lead to disparate locations of polarimetric signature and Doppler velocity couplet.

Note* The whiskers on this boxplot denote the full range of the data. (0th to the 100th percentile)

Preliminary Data Comparisons

 Median Z_{DR} remains around 1 dB at $Z_{H} < 60 \text{ dBZ}$

Differential Reflectivity vs. Reflectivity For EF2+ Events & Beam Height < 3 km

• Similar trend in full dataset, Z_{DR} near 0 associated with higher Z_{H} values

of the signature decreases.

Methodology

"Definite/Maybe/Loose" Classifications

Definite TDS

- Velocity couplet
- Minimum in ρ_{HV} values
- Reflectivity greater than 40 dBZ

Maybe TDS

 One of the above specifications for a "Definite TDS" is missing (e.g. minimum in ρ_{HV} values with velocity couplet)

Loose TDS

 Visual recognition of a TDS using only one of the above specifications (e.g. minimum ρ_{HV} only)

• Linear relationship between the EF rating and the height of the TDS • Height increases as the certainty

A TDS showing Z_{DR} Near OdB will result in larger reflectivity values and a lower correlation coefficient.

Note* This methodology is more important for upper tilts since they may show a weaker echo region of the storm of low precipitation values that could artificially inflate a TDS height

The analyzed/manually tracked dataset included 286 tornadoes and 701 volumes.

Future Work

- Expanding the dataset to include more recent tornado events
- Build a training dataset based on specific geospatial thresholds (beam height, elevation, range) and temporal thresholds (TDS longevity)
- Examine the influence of Z_{DR} biases
- Land cover characteristics