BRINGING IT ALL TOGETHER: A PROTOTYPE FOR A PROBABILSITIC NATIONAL BLEND

Zoltan Toth OAR/ESRL/GSD Mark Antolik NWS/MDL

Malaquias Pena NWS/NCEP/EMC & IMSG

Roman Krzysztofowicz University of Virginia

Melissa Petty, Geary Layne OAR/ESRL/GSD

Acknowledgements: Kevin Kelleher, Matt Peroutka, Yuejian Zhu, John Wagner, Geary Layne, Jeffrey Craven

AMS 2017 Annual Meeting

OUTLINE / SUMMARY

Role & relevance of NWP & SPP in forecasting

- NWP provides predictive information
- SPP fixes NWP miscalibration Potentially major user impact

• Proposed framework for National Blend of Models (NBM)

- Combine & calibrate guidance for NWP prognostic variables
- Derive user variables from calibrated prognostic variables

• A prototype for probabilistic NBM

- Bayesian Processor of Ensemble (BPE)
 - Combines multiple ensemble / high res forecasts & obs/analyzed climate
 - Unified processing of all continuous variables
 - Comprehensive set of output variables

BPE status

- Algorithm, software developed
- Ongoing transfer to MDL
- Comparative test against EKDMOS next

STATISTICAL POST-PROCESSING (SPP) IN NWP

- NWP is basis of weather forecasting
 - Provides all predictive information beyond 6 hrs
 - Data assimilation, numerical model, ensemble approach
- Systematic errors limit utility of NWP

 Forecasts are miscalibrated (mislabeled)
- Statistical Post-processing

 Re-labels forecast information
- Traditional approach to SPP

 Process each NWP guidance product individually
 - NAM-MOS, GFS-MOS, NAEFS-EKDMOS, etc
 - Multitude of products overwhelm forecasters
- Birth of NWS National Blend of Models (NBM)
 Merge & calibrate forecasts

PROBLEMS WITH NWP FORECASTS

- Drift of model solutions from real to model world
 1st moment calibration
- Uncertainty not captured well by single/ens fcsts
 - 2nd moment calibration
- Abundance of guidance products
 - Fusing all predictive information

Lead-time dependent behavior of

NWP Model Prog Variables (MPV) on model grid

Missing variables

Limited model resolution in space, processes, variables
 Simultaneous relationships btw

User Specific Variables on fine & MPVs on model grid

OBJECTIVE OF STATISTICAL POST-PROCESSING

Uncalibrated model variables

Calibrated user variables

Coarser model grid Fine scale grid

USER SPECIFIC VARIABLES

COMMON APPROACH TO POST-PROCESSING

1-Step, direct approach

Uncalibrated model variables

Calibrated user variables

Cost: L x M x (N / M); Retrain for each model update

Model gridpoints (M) << (N) Fine scale gridpoints O (10-100)

CALIBRATION OF MODEL PROGNOSTIC VARIABLES

Model grid (M)

CALIBRATION OF MODEL PROGNOSTIC VARIABLES

Model grid

CALIBRATION OF MODEL PROGNOSTIC VARIABLES

N / M savings from fixing model problems on model grid

Model grid (M)

DERIVATION OF USER VARIABLES

DERIVATION OF USER VARIABLES

Cost: M x (N / M) Retrain only for reanalysis update

Model grid Fine scale grid

PUTTING IT TOGETHER: 2-STAGE POST-PROCESSING

Model grid

Fine scale grid

1-STEP vs 2-STAGE APPROACH TO POST-PROCESSING

• Disadvantages of 1-step approach

- Addresses coarse scale model problem on fine scale grid Redundancy
- Separate derivation of user variables for each lead time Redundancy
- Requires hindcast sample

Benefits of 2-stage approach

- Addresses independent problems separately
 - Better understanding / separate metrics to focus on issues
- Modular design eases community involvement, supports collaboration
- Shared development of derivation tool box
 - Vast array of "perfect prog" tools available UPP, DA forward models, satellite product generation, etc
- Calibrated model variables can be used in downstream coupled appls
 - Liberates downstream users from ever changing model version specific biases
 - Develop and use reanalysis based relationships
 - One-way coupled user models (eg, hydro) can be calibrated with reanalysis
- Simplifies forecast editing Modify calibrated model prog variables
 - Multitude of consistent user variables automatically derived w/o addition. edits
- Thorough analysis of systematic model errors for model developers

RECOMMENDED APPLICATION

Calibrate all model prognostic variables

- Lead-time dependent behavior eliminated
 - NWP (re)analysis as proxy for truth
 - Calibrated forecasts statistically behave like analyses
 - Systematic error estimates useful for model developers
- NWP-based predictive info fused on model grid
- Scales with number of **model gridpoints x leadtimes**

Derive additional user variables

- Fine scale analysis as proxy for truth (RUA)
- Instantaneous relationships between analyses of
 - Model Prog Vars (MPV) & User Specific Variables (USV)
 - No lead-time dependency No need for hindcasts
- Toolbox with various types of routines
 - UPP, DA forward models and other physical & statistical methods
- Scales with number of **fine scale gridpoints**

Model Prognostic VariablesFine Scale User Var.REAL TIME NWP FORECASTHISTORICAL DATAEnsemble, High Res. ControlHindcast, (Re)analysisReanalysis

BAYESIAN PROCESSOR OF ENSEMBLE - BPE

BAYESIAN PROCESSOR OF ENSEMBLE (BPE) BASICS

- Use **climatology as basis** link w climate prediction
 - Fit parametric distribution to large climate sample
 - Calibration ensured, extremes handled gracefully w/o large hindcast
 - Express forecasts as anomalies from climate
 - No need for large hindcast sample to define obs. Climatology
- Transform each variable into normal space
 Unified approach for ALL continuous variables
- Assess predictive information in guidance products
 - Multilinear regression, 1st & 2nd moments as predictors
 - Well established technology (MOS); Forecast information maximized
- Process current forecast
 - Calibrated forecast as modified climate distribution (percentiles)
 - Most economic storage 2 modified pars of climate distribution
 - Prob. dist., quantiles, posterior ensemble (scenarios / joint prob)

6D NDFD – CENTRAL TENET OF FORECAST PROCESS

Connects NWP output w. users via value added steps

- Role
 - Repository of authoritative probabilistic guidance
 - Forecaster modification via editor tool
- Function
 - Holds answer to all questions about future environ.
 - Access info via interrogator tool
- Content
 - Calibrated prog. vars. from post-processing tool
 - Calibrated user variables incl. climate percentiles
- Format
 - 6D Space (3), time, variables, uncertainty
- Implementation
 - Phase 1 Only 2-fold expans. of current NDFD
 - Climatological distributions negligible cost
 - 2 BPE posterior parameters to describe fcst distribs
 - Phase 2
 - Ensemble members for joint probabilities & scenarios

Height

NATIONAL BLEND OF MODELS – BRINGING ALL THE PIECES TOGETHER

- Modular/comprehensive/expandable framework
- Academic research & NOAA operations
- Array of theory based techniques
- End-to-end workflow w up-to-date software
- Variety of forecast products & climate info
- All model prog vars processed in unified way
- Calibrated and informative guidance
- Comprehensive array of output formats
- Serving diverse applications

BACKGROUND

OUTLINE / SUMMARY

Role & relevance of NWP & SPP in forecasting

- NWP provides predictive information
- SPP fixes NWP miscalibration Potentially major user impact

• Proposed framework for National Blend of Models (NBM)

- Combine & calibrate guidance for NWP prognostic variables
- Derive user variables from calibrated prognostic variables

• A prototype for probabilistic NBM

- Bayesian Processor of Ensemble (BPE)
 - Combines multiple ensemble / high res forecasts & obs/analyzed climate
 - Unified processing of all continuous variables
 - Comprehensive set of output variables

BPE status

- Algorithm, software developed
- Ongoing transfer to MDL
- Comparative test against EKDMOS next

CURRENT GFS CONFIGURATION

NGGPS SYSTEM DESIGN CONSIDERATIONS

Component functionalities, links, software infrastructure

BPE PROJECT STATUS

- OMM version One ensemble, Multiple control & Multiple auxiliary predictors
 - Algorithm & documentation complete (U. Va)
 - Codes complete (GSD)
 - Off-line testing (GSD, ongoing)
 - Transition to MDL (Oct16)
 - Testing at MDL (Nov16)
- MMM version Multiple ensembles added
 - Algorithm & documentation (U. Va, Sep16)
 - Codes complete (GSD, Nov16)
 - Off-line testing (GSD, Jan17)
 - Comparison w EKDMOS
 - in operational environment (MDL, Mar17)
 - Assess quality & computational speed at observation sites
- Final report (All, May 2017)

Likelihood Function Estimator