NMMB Model Changes as Part of the NAMv4 Upgrade Poster 1205 Brad Ferrier¹, Eric Aligo¹, Zavisa Janjic², Eric Rogers², Jacob Carley¹, Dusan Jovic¹, Matthew Pyle², and Geoff DiMego² Session 3 **3206 Tower Oaks Blvd** 28th WAF/ 24th NWP NOAA/NWS/NCEP/EMC W/NP2

Needed to make changes to the NMMB model to fix:

 Three failures (aborted runs) of the production 4-km NAM CONUS nest occurred with Hurricane Joaquin (20150929 – 20151002).

• There was also a failure in the 3km real-time parallel NAM nest.

RESOLUTION

- Instability (left, center) occurred along the outer edge of a local wind maximum (right).
- Eliminated when advecting specific humidity every time step.
- This instability likely led to model failures.
- Likely due to lack of resolution for treating explicit convection.

Suite 300 Rockville, MD 20852

Email: Brad.Ferrier@noaa.gov

- But temperature (T) oscillations remained, even when all fields were advected and moist processes were updated every time step.
- T oscillations were brief, lasting \leq 15 min.
- Seen in other runs & different physics options.
- Large supersaturations (>20%) w/r/t water were found in tiny areas of strong ascent.
- Hundreds of runs were made with 5-min output to study cause(s).

"... all central difference schemes for solving the advection equation

NOAA Center for Weather and Climate Prediction 5830 University Research Court College Park, MD 20740

Changes to dynamics, turbulence, and the addition of parameterized convection did not remove T oscillations. 10,000s of profiles were analyzed from 5-min forecast output at locations of domain-maximum updraft velocities, surface rainfall rates, lapse rates, and supersaturations. The T profiles were stabilized only when layers with large lapse rates ($\Gamma > \Gamma_d$) were mixed out using the following method.

- **1. Only mix layers above the surface layer**
- (a) Mix (average) θ_{k+1} , θ_k , & θ_{k-1} if $\Delta \theta_{k+1/2} < \varepsilon \& \Delta \theta_{k-1/2} < \varepsilon, \ \varepsilon = -0.01^{\circ}C$
- (b) Mix θ_{k+1} & θ_k if $\Delta \theta_{k+1/2} < \varepsilon \& \Delta \theta_{k-1/2} \geq \varepsilon$
- (c) Mix $\theta_k \& \theta_{k-1}$ if $\Delta \theta_{k+1/2} \ge \varepsilon \& \Delta \theta_{k-1/2} < \varepsilon$
- 3. Iterate until all layers have been stabilized

- assimilation.

2. Between highest & lowest unstable (\partial \theta / \partial z < 0) layers:

— θ_{k+1} $\Delta \theta_{k+1/2} = \theta_{k+1} - \theta_{k}$ $\Delta \theta_{k-1/2} = \theta_k - \theta_{k-1}$ ⊎_{k-1}

[,] Water supersaturation was removed by updating cloud condensation every other time step when moist physics was not called.

FINAL REMARKS

These changes helped improve North American Mesoscale v4 (NAMv4) model forecasts along with changes discussed in presentations below:

• Rogers *et al.* (3B.4, 1/23) describes the full NAMv4 upgrade.

• Aligo et al. (4B.4, 1/24) describes microphysics improvements.

• Carley et al. (next poster, 1204) describes nest improvements.

• Liu et al. (Session 9.5 of IOAS Conf., 1/25) describes radar & lightning data