Stony Brook University School of Marine and Atmospheric Sciences NC STATE UNIVERSITY

Environmental Conditions Associated with Different Snow Band Structures within Northeast U.S. Winter Storms

Sara A. Ganetis ${ }^{1}$, Brian A. Colle¹, Nicole P. Hoban², Sandra E. Yuter²

1. Introduction

For snowbands, does one mechanism really fit all?

School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY ${ }^{2}$ Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC

3. Identification \& Classification of Bands

For each storm, during peak banding precipitation activity ($\pm 1 \mathrm{~h}$ from time of sounding launch), the closest sounding domain was used to create a 2 -h subset of radar data that was used to determine the lassication of banding
Snowbands were objectively identified within the composite reflectivity in each storm using the Method
for Object-Based Diagnostic Evaluation (MODE) tool within the Model Evaluation Tools (MET) for Object-Based Diagnostic Evaluation (MODE) tool within the Model Evaluation Tools (MET)
developed at the Developmental Testbed Center (DTC) at the Research Applications Laboratory (RAL) at the National Center for Atmospheric Research (NCAR). Objects were identified using a raw threshold of the upper-sextile of each ~ 5-min composite time within a storm. Object attributes including length and width were used to objectively classify bands by the criteria in the table below.

Each case was then subjectively classified into SINGLE - primary band only MULTI - ≥ 2 mid-sized bands only
BOTH - both primary and ≥ 2 mid-sized bands NONE - non-banded

The co
follows

- SINGLE -

MULTI - 12
BOTH - 59
BOTTH-59
NONE - 37
Storms were also analyzed to compare 56 stronger, mature storms with 54 weaker, developing storms with
classifications favored:

Developing storms: NONE (22) \&
Mature storms: BOTH (33)
The objective band attributes were used to quantify the average lengths (L) of each category of bands from hourly data Primary bands within SINGLE and BOTH cases: $\mathrm{L}=345 \mathrm{~km}$ Mid-sized bands within MULTI and BOTH cases: $\mathrm{L}=72 \mathrm{~km}$

4. Banding Environment

Specific banding ingredients, i.e. mid-level ($700-\mathrm{hPa}$) frontogenesis and saturation equivalent potential vorticity (MPV*), were compared for each classification.

For all 110 cases:
MULTI and NONE cases were associated with weak frontogenesis.
BOTH caes were associated with strong frontogenesis likely given the proximity to the single band.

5. Summary \& Future Work

Multi-bands, i.e. multiple snowbands with lengths $\leq 200 \mathrm{~km}$, occurred in 71 out of 110 Northeast U.S. winter storms and constitute the majority of enhanced snowfall area Multi-bands occurred within 300 km of a primary band in 59 out of 110 storms, while single bands, or primary bands without the presence of multi-bands, only occurred in 2 storms.
Primary bands in the presence of multi-bands were "Observations Lead the Way" Primary bands in the presence of multi-bands were forced via frontogenetical ascent but multi-bands Multi-band forcing mechanisms are the subject. Multi-band forcing mechanisms are the subject of ongoing work.

Thanks to Laur
 provide insight into the complex baar
environments within winter storms.

