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NOAA Emergency Response Division 

•  US National Contingency Plan: 
NOAA to provide Scientific Support Support for 
Hazardous Materials spill response in Coastal Waters 

•  “All Hazards” response support for over 35 years 
•  Provide support for 100-200 responses/year 
•  In-house, interdisciplinary team of spill scientists 
•  We develop our models in-house 
•  Primarily users of met/ocean model results: 

–  We don’t run them… 
•  Need to ingest whatever is available: 

 HF Radar, circulation models, met models, etc. 
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GNOME 

General NOAA Operational 
Modeling Environment 

•  General particle tracking model – but primarily 
used for Oil Spill Modeling. 

•  Drivers: 
–  Ocean, Coastal and Estuarine circulation models 
–  Met models (surface winds) 
–  Gridded data (i.e. National Digital Forecast Database) 

•  Largely written in Python 
•  We’re tired of writing custom code for each 

model! 

https://github.com/NOAA-ORR-ERD/PyGnome 
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The Problem 

•  There are a lot of models out there 
•  Models calculate and present their results on a particular 

grid system. 
•  Different models use different systems 

–  Regular grids 
–  Curvilinear grids 
–  Unstructured grids 
–  Staggered grids  
•  In order to use, visualize, analyze or compare model 
results, you need to understand each model’s grid system 

(and it can be pretty complex to deal with them) 
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The Solution 

Those of us that work with the results from multiple 
modeling systems need: 

•  Standardized file formats 

•  Libraries / APIs for working with these results that 
abstract out the differences. 
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The Standards 

For Meteorological and Oceanographic work, the 
granddaddy of standards is: 
 
NetCDF Climate and Forecast (CF) Metadata Conventions 

http://cfconventions.org/ 
	
  
If your data is CF-compliant, there are great tools that 
make it easy to work with that data: 
 
In Python: iris, xarray, etc. 
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The Standards 

But there are no broadly accepted 
standards or unstructured or staggered 

grid systems. 
 
 

Until recently. 
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UGRID + SGRID 
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UGRID: For unstructured grids, a standard has been 
developed over many years -- beginning with a meeting at 
Unidata in 2006 

Community effort -- recently reached 1.0 
http://ugrid-conventions.github.io/ugrid-conventions 
 
SGRID is a more recent effort, seeking to establish 
conventions for “staggered grids”, where different 
components of parameters are not computed at the same 
location on the grid. 

Also a community effort: 
http://sgrid.github.io/sgrid/ 



pyugrid 

Python package for that supports the UGRID data model. 
 
Provides reading/writing of UGRID-compliant datasets. 
 
Facilitates grid: 
•  Manipulation 
•  Navigation 
•  Access data associated with the grid 
•  Interpolation 
 
https://github.com/pyugrid/pyugrid 
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pysgrid 

Python package for that supports the SGRID data model. 
 
Provides reading/writing of UGRID-compliant datasets. 
 
Facilitates grid: 
•  Manipulation 
•  Navigation 
•  Access data associated with the grid 
•  Interpolation 
 
https://github.com/sgrid/pysgrid 
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gridded 
Notice the similarity –  Why have multiple packages / 
APIs for the same thing? 
 

The goal of gridded is to provide a single API, so users 
can do: 

Analysis – Computation – Visualization -- Inter-comparison 
Without having to know what grid the results are on. 
 

Kind of like an iris or xarray that understands the complex 
grid structure. 
 

https://github.com/NOAA-ORR-ERD/gridded 
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Structure 
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Loading data: 
•  From netcdf file 
•  From OpenDAP url 
•  From already open netCDF4 Dataset 
•  From raw data collected from anywhere else 

Can be as simple as: 
import gridded 
ds = gridded,Dataset(“a_netcdf_file.nc”) 
 
This gets you a Dataset object you can work with 
 
 
 



What’s in a Dataset? 
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Create a Dataset: 
 
In [8]: ds = Dataset("COOPS_NGOFS.nc") 
 
It has a Grid object (Unstructured in this case) 
 
In [10]: ds.grid 
Out[10]: <gridded.grids.Grid_U at 0x110a902e8> 
 

And a dict of variable objects: 
 
In [11]: ds.variables.keys() 
Out[11]: dict_keys(['nbe', 'u', 'v']) 
 
 



What’s in a Grid? 

2/21/17	
   14	
  

Topology Info: 
 
In [18]: ds.grid.nodes 
array([[-97.15014648,  25.83448029], 
       [-97.13427734,  25.83549118], 
       ...,  
       [-89.85437012,  29.99418068]]) 
 
In [19]: ds.grid.faces 
array([[  171,   170,     0], 
       [    1,   170,   172], 
       ...,  
       [90265, 90266, 90252], 
       [90254, 90253, 90266]], dtype=int32) 

But you generally don’t need to know about that. 
 



What’s in a Grid? 
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Lots of utilities for manipulating the grid 
 
grid.build_boundaries 
grid.build_face_face_conectivity 
... 
 

Cell finding and interpolation: 
 
grid.locate_nodes(points) 
grid.locate_faces(points) 
grid.interpolate_var_to_points(points) 
 



What’s a Variable? 
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In [24]: u = ds.variables['u'] 
 
The actual data array (could be lazy-loaded netcdf 
variable): 
In [25]: u.data[:] 
array([[ 0.1068607 ,  0.12801492,  0.12656225, ...,  
0.00156309, 
 
Any attributes (pulled from netcdf variable) 
In [26]: u.attributes 
Out[26]:  
{'long_name': 'Eastward Water Velocity', 
 'mesh': 'fvcom_mesh', 
 'standard_name': 'eastward_sea_water_velocity’, 



What’s a Variable? 
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A Variable’s data can be  2, 3, or 4D: 
Each Variable has: 
•  A data array 
•  A Grid object that provides location / interpolation in 

the horizontal 
•  A Time object for interpolation in time 
•  A Depth object for interpolation in the vertical 

•  Depth supports z and sigma coordinates 
Interpolation: 
Variable.at(points, time, extrapolate=False) 

(points can be 2D or 3D) 
(bi-linear or nearest neighbor for now) 



Two “views” on the data 
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The whole data set: 
•  A Dataset represents a grid and a bunch of data on that 

grid. 
•  Essentially what is usually in a netcdf file 
•  Can be loaded from and saved to a file as a unit. 

A single variable: 
•  Each Variable represents one field of one physical 

value: 
•  Temperature, salinity, velocity 
•  (there is vector Variable object, too) 

•  You can work with just a Variable, and the grid, etc. will 
be handled under the hood. 



Performance 
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All operations designed for performance: 

•  All operations are numpy vectorized 
•  Data is lazy-loaded from file or OPenDAP url (often 

only what is required) 
•  Variables on the same grid share a Grid object 
•  Cell-finding uses high-performance cell_tree2d (C++) 
•  Grids “memoize” cell locations – so multiple queries for 

the same location don’t have to be repeated. 

This is all code you don’t want to keep re-writing! 
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You can plot, etc. with whichever tools you like: 
Iris, Cartopy, Matplotlib 

https://github.com/NOAA-ORR-ERD/gridded/blob/master/examples/
UGRID_plotting_COMT.ipynb 
 
 



Beyond Plotting 
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Plotting is the easy part: 
•  You know where the data are 
•  You just have to access the values 
 
 
To do analysis or model comparison, or…. 
•  You need to access data at a given point 

(in world coordinates) 
•  You may need to interpolate: 

 not trivial on arbitrary quads… 
 
 



Velocity on an SGRID 
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Example: ROMS and the Arakawa C-grid: 
 
U and V at different locations 
on the cell: 
Natural no flow boundary conditions. 
 
Often interpolate to cell centers--fine for 
visualization (gridded makes this easy) 
 
 
gridded.sgrid: interpolates U,V on their own “grids”, 
puts them together and rotates them appropriately   
 
 

U	
  “grid”	
  

V	
  “grid”	
  



Finding What Cell a Given point is in 
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Non-trivial: (826,866 cells) 
 
%timeit ug.locate_faces((-93.5, 30.0), 'simple') 
1 loops, best of 3: 10.9 s per loop 

 
%timeit ug.locate_faces((-93.5, 30.0), 'celltree') 
100000 loops, best of 3: 7.98 µs per loop 

 
Celltree2d: A highly optimized data structure for locating 
cells in unstructured meshes: 
 
https://github.com/NOAA-ORR-ERD/cell_tree2d/ 

 
 



Particle Tracking 
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To do particle tracking, you need to: 
 
•  Figure out where the particles are in the grid. 
•  Find the values of the velocities at that location: 

–  Interpolate in space 
–  Interpolate in time 
–  Interpolate in depth ? 

•  Maybe multiple times – for RK methods 

Each grid type requires specialized code: 
•  Single API provided by gridded 



What if your file isn’t compliant? 
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Utilities to help you load non-compliant files: 
 

topology_names = {'nodes_lon': 'lon', 
                  'nodes_lat': 'lat', 
                  'faces': 'ele' 
                  } 
ds = Dataset.load_from_varnames(infilename, topology_names) 
 

Now you have a “proper” Dataset object. Add variables if you like: 
 
And save it out to get a fully compliant UGRID or SGRID netcdf file: 
 
ds.save(outfilename, format=netcdf4) 
 

 



Status 
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•  Lots of working/tested code from: 
•  pyugrid 
•  pysgrid 
•  py_gnome 

•  Code is semi-merged into gridded 

•  Interpolation works in horizontal and time 
•  Vertical needs works 



Future Work 
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•  Iron out the API 
•  Documentation! 
•  PyPi and conda packages 
•  Custom plotting (Cartopy…) 
•  Subsetting grids ? 
•  Re-gridding ? 
•  Other interpolation methods ? 
•  Integrate with other packages: WRF Python? 
•  More of the xarray API? 



Conclusions 
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The first step is metadata standards: 
•  Use CF and UGRID and SGRID so others can 

use your results. 

gridded makes it easier to work with, and generate, 
compliant files. 
 

gridded provides a model-agnostic analysis platform. 
 

Join us on gitHub! 
 

https://github.com/NOAA-ORR-ERD/gridded 
 


