Temporal and Spatial Aspects of Emergency Manager Use of Prototype Probabilistic Hazard Information

Dr. Daphne LaDue1, Dr. Chris Karstens2, Dr. James Correia Jr.3, James Hocker4, Shadya Sanders5, Michelle Dovil6, Cassandra Shivers6, Anjerrika Bean5, Dr. Terri Adams6, Alan Gerard6

1OU CAPS, 2OU CIMMS & NOAA NSSL, 3OU CIMMS & NOAA SPC, 4OCS, 5Howard U., 6NOAA NSSL

NWS Hazards Simplification Project:

Introduction

Each year emergency managers and their local constituents must make difficult decisions about when to evacuate or whether to shelter-in-place. The timing and spatial aspects of these decisions were studied during the 2013 Hazard Awareness Weather Test (HAWT) Probabilistic Hazard Information (PHI) project (HWT et al. in this conference) which falls within the context of The challenges posed by potential future climate scenarios (HWT) goal.

This work focuses on the temporal and spatial aspects of decision making. City, county, and state level emergency managers were given simulators using the PHI information that was issued by National Weather Service forecasters in another room. Additionally, allcast meteorologist operated a mock TV station that provided local broadcasts to the EMs.

Introduction

Simplication is not known.

Several Emergency Support Function types were included to capture the many decision making aspects of severe weather. EMs expressed that the PHI concept was helpful, but a lot of the balance of input was not used in decision making. EMs used the PHI information to reinforce their current strategies. PHI made the interplay between the public and EMs much more dynamic for EMs, allowing them to make decisions based on probabilistic information.

31 March 2016 Case

32 minutes after issuance of the PHI report, and when the storm moved over Chandler, AZ. Clouds suggested that the PHI report was not used.

PHI issued by National Weather Service forecasters in another room. Each year emergency managers and their local constituents must make difficult decisions about when to evacuate or whether to shelter-in-place. The timing and spatial aspects of these decisions were studied during the 2013 Hazard Awareness Weather Test (HAWT) Probabilistic Hazard Information (PHI) project (HWT et al. in this conference) which falls within the context of future climate scenarios (HWT) goal.

This work focuses on the temporal and spatial aspects of decision making. City, county, and state level emergency managers were given simulators using the PHI information that was issued by National Weather Service forecasters in another room. Additionally, allcast meteorologist operated a mock TV station that provided local broadcasts to the EMs.

Introduction

Simplication is not known.

Several Emergency Support Function types were included to capture the many decision making aspects of severe weather. EMs expressed that the PHI concept was helpful, but a lot of the balance of input was not used in decision making. EMs used the PHI information to reinforce their current strategies. PHI made the interplay between the public and EMs much more dynamic for EMs, allowing them to make decisions based on probabilistic information.

31 March 2016 Case

32 minutes after issuance of the PHI report, and when the storm moved over Chandler, AZ. Clouds suggested that the PHI report was not used.

PHI issued by National Weather Service forecasters in another room. Each year emergency managers and their local constituents must make difficult decisions about when to evacuate or whether to shelter-in-place. The timing and spatial aspects of these decisions were studied during the 2013 Hazard Awareness Weather Test (HAWT) Probabilistic Hazard Information (PHI) project (HWT et al. in this conference) which falls within the context of future climate scenarios (HWT) goal.

This work focuses on the temporal and spatial aspects of decision making. City, county, and state level emergency managers were given simulators using the PHI information that was issued by National Weather Service forecasters in another room. Additionally, allcast meteorologist operated a mock TV station that provided local broadcasts to the EMs.

Introduction

Simplication is not known.

Several Emergency Support Function types were included to capture the many decision making aspects of severe weather. EMs expressed that the PHI concept was helpful, but a lot of the balance of input was not used in decision making. EMs used the PHI information to reinforce their current strategies. PHI made the interplay between the public and EMs much more dynamic for EMs, allowing them to make decisions based on probabilistic information.

31 March 2016 Case

32 minutes after issuance of the PHI report, and when the storm moved over Chandler, AZ. Clouds suggested that the PHI report was not used.

PHI issued by National Weather Service forecasters in another room. Each year emergency managers and their local constituents must make difficult decisions about when to evacuate or whether to shelter-in-place. The timing and spatial aspects of these decisions were studied during the 2013 Hazard Awareness Weather Test (HAWT) Probabilistic Hazard Information (PHI) project (HWT et al. in this conference) which falls within the context of future climate scenarios (HWT) goal.

This work focuses on the temporal and spatial aspects of decision making. City, county, and state level emergency managers were given simulators using the PHI information that was issued by National Weather Service forecasters in another room. Additionally, allcast meteorologist operated a mock TV station that provided local broadcasts to the EMs.

Introduction

Simplication is not known.

Several Emergency Support Function types were included to capture the many decision making aspects of severe weather. EMs expressed that the PHI concept was helpful, but a lot of the balance of input was not used in decision making. EMs used the PHI information to reinforce their current strategies. PHI made the interplay between the public and EMs much more dynamic for EMs, allowing them to make decisions based on probabilistic information.