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Introduction

Numerical weather prediction requires precise initial conditions to pro-
vide an accurate forecast. The true state of the atmosphere, which
1s unknown, can be estimated by combining observations with short
range forecasts, or model background. This estimate, called the analy-
sis, can then be used as an initial condition. Determining the analysis
depends not only on the observations and background, but also on their
eITors.

At the National Center for Environmental Prediction (NCEP), data
assimilation 1s executed with the Gridpoint Statistical Interpolation
(GSI). Satellite observations from the Infrared Atmospheric Sounding
Interferometer (IASI) and the Atmospheric Infrared Sounder (AIRS)
provide a wealth of observations and have both been proven to be ex-
tremely beneficial to numerical weather prediction. In the GSI, 616
IASI channels and 281 AIRS channels are used, of which 165 from
IASI and 117 from AIRS are actively assimilated. From IASI, this set
includes longwave upper and lower temperature sounding channels,
longwave window channels, and ozone channels. From AIRS, this in-
cludes upper and lower temperature sounding channels, longwave win-
dow channels, water vapor channels, and a few shortwave window and
temperature channels.

Inter-channel error correlations are not accounted for within the GSI,
however they are known to exist. The purpose of this study 1s to ul-
timately enhance the specification of observation errors in the opera-
tional GSI by improving their estimates and by properly accounting for
these inter-channel error correlations.

Theory and Methods

The goal of data assimilation is to determine the analysis state x“ that
minimizes a cost function
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where x” denotes the background state, B the background error covari-
ance matrix, H the nonlinear observation operator, y° the observations
and R the observation error covariance matrix.

In current NCEP operations, R 1s assumed to be diagonal, and does
not account for inter-channel correlations. To estimate the full R, the
Desroziers diagnostic 1s used. This method assumes that observation
and background errors are uncorrelated and are perfectly specified in
the analysis. For a pair of analysis and background departures (ob-
servation minus guess), denoted by A and B respectively, the error
covariance 1s given by the expected value

R = E[(A)! B).

For channels r» and ¢ of IASI or AIRS, this means that inter-channel
error covariances can be estimated by computing
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where p denotes the size of a set of departure pairs.

Experimental Setup and Considerations

The Desroziers diagnostic in (2) 1s used to compute observation error
covariance matrices for IASI and AIRS over all surface types. Here,
departure pairs are made for observations that are actively assimilated
and are within 60 minutes and 25 kilometers of one another.

Correlation matrices computed from April 4, 2014 to June 7, 2014
for both instruments are shown below.
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Figure 1: Diagnosed observation error correlation matrices for AIRS (left) and IASI
(right) over water (top) and land (bottom) surfaces.

Reconditioning

The condition number of a matrix, /&, 1s defined as the ratio of its
largest eigenvalue to its smallest. Minimizing the cost function in (1)
requires the computation of R~! which can be expensive if R 1s poorly
conditioned (K 1s large). To recondition R, first the smallest eigenval-
ues are set equal to \,,,;,,/ K1, where K| = 150 for AIRS and K| = 200
for IASI. Next, the diagonal of R 1s inflated by a small standard devia-

tion o R, = ( R, + 0)2 |

The value of o 1s chosen to give R a condition number of approxi-
mately 40.
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Figure 2: Diagnosed observation errors for AIRS (left) and IASI (right) after recon-
ditioning, compared to the assigned errors.
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Results

Full observation error covariances for AIRS and IASI were used glob-
ally in a two month long assimilation experiment using the Global
Forecast System (GFS). This Full R experiment i1s compared to a con-
trol experiment using Diagonal R.
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Figure 3: Analysis RMS increment differences between the Full R and Diagonal R
experiments.
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Figure 4: The forecast fit to temperature (left) and humidity (right) observations.
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Figure 5: The analysis fit to a passive Cross-track Infrared Sounder (CrIS) humidity
sounding channel. The background fit (not shown) 1s similar.
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Figure 6: The 500 mb Height Anomaly Correlation (top) and temperature RMSE
differences between the Full R and Diagonal R experiments (bottom).

Conclusions

e Inter-channel observation error correlations exist for IR instruments,
and the currently assigned errors are much larger than the diagnosed
values.

e Overall, using fully correlated observation error covariances for
AIRS and IASI improved the fit to numerous observation types, in-
cluding temperature and humidity. The fits to various channels from
CrIS and other satellite instruments were also improved.

e Analysis increments are increased by using a full error covariance
matrix, however, forecast impacts are generally neutral.

Forthcoming Research

Upcoming research will focus on:

e Optimizing the forecast impact by tuning the reconditioning param-
eter o

e Studying the impact of each instrument separately, as well as the
treatment of different surface types,

e Using full covariances for CrIS.
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