Hidden meltwater in the ice: Extending Greenland Ice Sheet subsurface meltwater records with satellite remote sensing

> MARGEAUX CARTER DAVID B. REUSCH AMS ANNUAL MEETING JANUARY 24, 2017

National Science Foundation's Division of Polar Programs award ARC-1304849

Increasing Melt in Greenland

Data Source: Mote (2014)

Increasing Melt in Greenland

Data Source: Mote (2014)

Observed Buried Lakes and Firn Aquifer

Greenland Hydrology in a Changing Climate

Perennial Firn Aquifers (PFAs)

Discovered April 2011

PFA

BSL

2011

2009

2010

2011

- Estimated 70,000 mi² (Forster et. al. 2013)
- Estimated 140 Gt, (Koenig et. al. 2014)

Buried Supraglacial Lakes (BSLs)
Estimated 1.5 Gt in 2011 (Koenig et. al. 2015)

Data Source: Miège, pers. comm., Lampkin, pers. comm

Perennial Firn Aquifers

Image from Fountain and Walders (1998)

Buried Supraglacial Lakes

Impact of Retained Water

Delayed water drainage
PFA ~0.04 mm slr
Glacier outlet velocity
Catastrophic drainage

Satellite Observation Potential

Current Observations: Operation Ice Bridge (OIB)

- 2009-present
- Limited flight paths
- Melt season only
- **Satellite Observations: AMSR-E**
- ° **2002-2011**
- Very similar frequencies
- Entire ice sheet daily
- Low spatial resolution

Operation Ice Bridge Flight Lines, 2011

Method

$$SD = \frac{\nabla(6.9 GHz Tb)}{Max(\nabla(6.9 GHz Tb))} - \frac{\nabla(10.7 GHz Tb)}{Max(\nabla(10.7 GHz Tb))}$$

- Low frequencies
- Spatial derivative
- Frequency difference
- Scaling

AMSR-E/Aqua Daily EASE-Grid Brightness Temperatures, Version 1 NASA NSIDC Distributed Archive Data Center Knowles et. al. (2006)

Results Summer SD is inconsistent due to surface melt interference. Winter SD is temporally consistent.

Results

Consistent profile for locations without observed subsurface water.

2010 Data Source: Miège, pers. comm. , Lampkin, pers. comm

Results

Consistent profile for locations without observed subsurface water. Inconsistent profile for locations with subsurface water. Comparison Points = 2861

Points with Subsurface Water = 2009: 46, 2010: 60, 2011: 144

Data Source: Miège, pers. comm., Lampkin, pers. comm

Results Winter high SD area trails melt season cumulative area

Data Source: Mote (2014)

Conclusions

Retained Meltwater Record Extension

- Increased spatial coverage (full ice sheet)
- Increased temporal coverage (2002-2011, 7 years pre-OIB)
- Observation based
- **Inconsistent Identification**
- True negatives
- True positives
- False positives and negatives

Future Work

Brightness Temperature Emission Model

- Develop Tb for known subsurface conditions
- Test and refine SD

Testing meteorological drivers of PFA

- Locations identified by SD
- Accumulation, melt intensity

Moving SD regions

Additional record extensions, SMMR 1978-1987

Questions?

References

- Forster, R. R. and Coauthors, 2013: Extensive liquid meltwater storage in firn within the Greenland ice sheet. *Nat. Geosci.*, **7**, 95-98, doi:10.1038/NGEO2043.
- Knowles, K., M. Savoie, R. Armstrong, and M. Brodzik. 2006. AMSR-E/Aqua Daily EASE-Grid Brightness Temperatures, Version 1. [Northern Hemisphere]. Boulder, Colorado USA: NASA DAAC at the National Snow and Ice Data Center Distributed Active Archive Center. doi: <u>http://dx.doi.org/10.5067/XIMNXRTQVMOX</u>. [November 3 2015].
- Koenig, L. S and Coauthors, 2015: Wintertime storage of water in buried supraglacial lakes across the Greenland Ice Sheet. *The Cryosphere*, **91**, 1333-1342, doi: 10.5194/tc-901333-2015.
- Koenig, L. S., Forster, R. R., Miege, C., and Brucker, L., 2014: Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer. *Geophys. Res. Lett.*, **41**, 81-86, doi: 10.1002/2013GL058083.
- Lampkin, D. J., Buried Lakes Data 2009-2012. Unpublished Dataset, personal communication. [November 29 2016]
- Miège, C., Aquifer Picks 2011. Unpublished Dataset, personal communication. [November 1 2016]
- Mote, T. L. 2014. *MEaSUREs Greenland Surface Melt Daily 25km EASE-Grid 2.0, Version 1.* [Northern Hemisphere]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center.

doi: http://dx.doi.org/10.5067/MEASURES/CRYOSPHERE/nsidc-0533.001. [March 9 2015].

SD and **Subsurface Water Density**

SD at Locations with Subsurface Water

Data Source: Miège, pers. comm., Lampkin, pers. comm

Moving SD Regions

Classified SD Jan-Mar Avg and Meteorological Parameters

Meteorological Drivers

Subsurface liquid water
High accumulation
High melt intensity
Forster et. al. (2014)
Munneke (2014)

Data Source: Bromwich et. al. (2012) Arctic System Reanalysis