A coupled decadal-scale air-sea interaction theory: the NAT-NAO-AMOC-AMO coupled mode and its N
Impacts on global and regional climate

Cheng Sun?, Jianping Lit and Fei-Fei Jin?

1. College of Global Change and Earth System Science, Beljing Normal University, Beljing 100875, China GCESS
2. Department of Atmospheric Science, University of Hawali-Manoa, Honolulu, USA /

4. Three kevy phvysical processes

1. Introduction

It has been well documented In the literature that over interdecadal timescales #1 Direct effect of NAT on NAO #2 NAO forcing of AMO/AMOC
the NAO has important impacts on regional and hemispheric climates in the NH. N o — —_—
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The NAO shows a remarkable upward trend over the second half of the RN vE g
twentieth century. This upward trend explains much of the observed warming sl s e £ 1reo-
trend over Eurasia and North America, and has been linked to the interdecadal W PR NN TS & 2100 -
variations of Asian winter monsoon. However, since the 1990s, the NAO has Yy U T e N T

shown a significant decreasing trend. | |
Atmospheric (SLP) responses to the AMO and NAT In

Several factors, such as greenhouse gas emissions and warming in tropical
oceans, have been suggested to account for the NAO interdecadal variations,
but neither of them could explain the NAO downward trend during the two most
recent decades.

Mechanisms and physical processes involved in the multidecadal air-sea
Interaction over the North Atlantic basin remain to be elucidated.
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S o [ ./ -pheattransport  Tha nositive correlations are at first

located in the upper North Atlantic and
then propagate into the subpolar region,
: Sh o g expanding downward; the negative
o R correlations are shifted southward.
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NAT is in phase with NAO AMO/AMOC + The positive NAO forces the enhancement of the AMOC,
NAO vs. AMO and leads to the AMO positive phase. The forcing effect is
@ 1 delayed by about 15 years, possibly due to the large
g Inertia associated with slow oceanic processes. The
g T [ NAO + ] enhanced AMOC continues to affect the heat transport,
8 7 and due to slow ocean adjustment, the North Atlantic
. . R 06| NAG Loads § T oyrs Ocean shows a delayed response (after about 18 years)
The first leading POP mode of band-pass (50-70 T e " ) [ NAT + ] [ NAO - ] :ﬁattherezr:;%?;gg tir;haSCAer ﬁggﬁlew'tgh;‘;‘e_ssghgam?
years) filtered annual SST anomalies over the North NAO leads AMO, while AMO has negative phase coincides with the NAO negative phase in
Atlantic Ocean: (a) real-part pattern of POP1; (b) R R 1o-20vre T the atmosphere, and thus the cycle proceeds, but in the
Imaginary-part pattern of POP1; and (c) their Lead—lag correlation between the AMO/AMOC - opposite sense. Blue (black) text indicates oceanic
corresponding PCs. The POP patterns are shown as NAO and NAT (upper) and AMO (atmospheric) phenomena.
the SST anomaly (in K) regressions onto the  (bottom)indices in the CCSM4 Schematic diagram of the physical
normalized PCs. The boxes marked in (b) indicate the simulations. processes for the quasi-60-yr cycle
regions used to define the NAT index.
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