Tree Water Storage as a Diagnostic Metric of Forest Response to Drought

Ashley M. Matheny, Golnaz Mirfenderesgi, Gil Bohrer

Ohio State University, Department of Civil, Environmental and Geodetic Engineering

U. of Michigan Biological Station (UMBS) Ameriflux site

- Control LAI $\approx 3.89 \text{ m}^{2}\text{m}^{-2}$
- Disturbance LAI $\approx 3.68 \text{ m}^2\text{m}^{-2}$

Transpiration and latent heat at the plot level

Sap flux \approx 78% of LE

Behavioral changes at the species level

Sap flow density

Matheny et al. 2014, JGR Biogeosciences

CEGE Department of Civil, Environmental and Geodetic Engineering

- Oak: 53% ↑
- Maple: 5% ↑
- Pine: 6% ↑

Stomatal conductance

- Oak: 63% ↑
- Maple: 37% ↓

• Pine: 132% ↑

Rooting depth differences enable sustained water uptake

• D-excess:

Matheny et al. 2016, Ecohydrology

CHIO SIATE UNIVERSITY

Species-specific dynamics during dry conditions

Matheny et al. 2016, Ecohydrology

T · H · E OHIO SIATE UNIVERSITY

Water storage dynamics with declining soil water

T · H · E OHIO SIATE UNIVERSITY

Water storage dynamics with declining soil water

➤ Matheny et al. 2015, Ecosphere

T · H · E OHIO SIATE UNIVERSITY

Water storage dynamics with declining soil water

➤ Matheny et al. 2015, Ecosphere

Water storage dynamics with declining soil water

Water storage dynamics with declining soil water

CEGE Department of Civil, Environmental and Geodetic Engineering

Finite-difference Ecosystem-scale Tree-

crown Hydrodynamics (FETCH2)

Model parameters define hydraulic strategy

➢ Matheny et al. 2016, Ecohydrology

Preliminary FETCH2 simulations

Things the AMS asked for

Observations (or networks) that are needed: Ameriflux (flux network), TRY (plant trait network), Soil moisture observations

Recommended instruments that are needed: Sapflow sensors, flux towers, spaceborne microwave radiometers, spaceborne hyperspectral images

Greatest observational needs for your discipline:

High resolution global soil moisture reanalysis

Acknowledgements

Current and past students: Tim Morin, Camilo Rey Sanchez, Kyle Maurer, Julia Thomsen, Alyssa Wunderlich <u>UMBS team</u>: Chris Vogel, Peter Curtis, Chris Gough, Knute Nadelhoffer, Luke Nave <u>Insightful collaborators</u>: Simone Fatichi, Rich Fiorella, Karina Schäfer, Valeriy Ivanov, Lingli He, Elizabeth Agee

Ohio Supercomputer Center Empower. Partner. Lead.

National Science Foundation

